FRANCE

.
RO o QuanliP) Eimr

INITIATIVE

Graphix: develoment and usage updates

) https://github.com/TeamGraphix/graphix/
22 September 2025

Maxime Garnier, Thierry Martinez, Mateo Uldemolins

Doesx @ lrea—

https://github.com/TeamGraphix/graphix/

Measurement-based quantum computing

— Principle [RB01]

Measurement
outcome

si€{0,1}
_—
ol
—
Updated angle

0; =0

Measurement-based quantum computing

— Principle [RB01]

Measurement

RESw|

outcome

si€{0,1}

Updated angle
/
0; —0;

— Commands [DKP07]
- Ni: ancilla node preparation ® |+),
- Ej: entanglement CZ;

- MM measurement (5 4|
X € {XY,YZ,XZ},a € [0,2x]

- X7, Z}: Pauli corrections s, t € {0,1}

— Pattern: sequence of commands

Measurement-based quantum computing

— Principle [RB01] — Equivalence to circuit model and universality

Measurement

AEanl

outcome

si€{0,1}

Updated angle
/
0; —0;

— Commands [DKP07]
- Ni: ancilla node preparation ® |+),
- Ej: entanglement CZ;

- MM measurement (5 4|
X € {XY,YZ,XZ},a € [0,2x]

- X7, Z}: Pauli corrections s, t € {0,1}

— Pattern: sequence of commands

Measurement-based quantum computing

— Principle [RB01]

Measurement

RESw|

outcome

si€{0,1}

Updated angle
/
0; —0;

— Commands [DKP07]
- Ni: ancilla node preparation ® |+),
- Ej: entanglement CZ;

- MM measurement (5 4|
X € {XY,YZ,XZ},a € [0,2x]

- X7, Z}: Pauli corrections s, t € {0,1}

— Pattern: sequence of commands

— Equivalence to circuit model and universality

- compilation to {J(a) = HZ(a), CNOT}
gate set [DKPO07]

= XEMSTYENe = ‘

Measurement-based quantum computing

— Principle [RBO01] — Equivalence to circuit model and universality
(ol Measurement
o) outeome - compilation to {J(a) = HZ(a), CNOT}
—en gate set [DKP07]
@ Updated angle .
0; =0} Z(a) = XM TUERN, = ‘

— Commands [DKP07]
- uni | hs: e.g. brickwork [BFK09
- Ni: ancilla node preparation ® |+), universal graphs: e.g. brickwork []
- Ej: entanglement CZ;

- MM measurement (5 4|
X € {XY,YZ,XZ},a € [0,2x]

- X7, Z}: Pauli corrections s, t € {0,1}

— Pattern: sequence of commands

|2/34

September 22, 2025

Determinism and flow conditions

— Strong determinism: all computation branches are equal up to a global phase

Determinism and flow conditions

— Strong determinism: all computation branches are equal up to a global phase

— Strongly deterministic patterns implement isometries

Determinism and flow conditions

— Strong determinism: all computation branches are equal up to a global phase
— Strongly deterministic patterns implement isometries

— Robust determinism [PS17]: strong, uniform, stepwise

Determinism and flow conditions

Strong determinism: all computation branches are equal up to a global phase

Strongly deterministic patterns implement isometries

Robust determinism [PS17]: strong, uniform, stepwise

Flow conditions: graphical conditions on open graphs (G, I, O, \)
[DK06, BKMP07, BMBdF 21, MPS22]

Causal) Generalized > :) Shadow
flow flow it il Pauli flow
*
Without Pauli
\U/ measurements \U/ 1]:

Robust
determinism

Determinism and flow conditions

Strong determinism: all computation branches are equal up to a global phase

Strongly deterministic patterns implement isometries

Robust determinism [PS17]: strong, uniform, stepwise

Flow conditions: graphical conditions on open graphs (G, I, O, \)
[DK06, BKMP07, BMBdF 21, MPS22]

— Can be found in polynomial time [MPO08, BMBdF 21, Sim21, MPS22, MB24]
Causal) Generahzed >) Shadow
flow Pauli flow Pauli flow

*
Without Pauli
measurements
Robust
determinism

The Graphix project

- Why MBQC?
- Interesting primitives (feedforward)
- Intermediate language for circuit optimisation [BMBdF*21]
- Applications (network scenarios, native algorithms)

The Graphix project

- Why MBQC?
- Interesting primitives (feedforward)
- Intermediate language for circuit optimisation [BMBdF*21]
- Applications (network scenarios, native algorithms)

— Why an MBQC software?

- Needed for our own research work
- No fully satisfactory solution [JD22, EOSR23, BD25]

The Graphix project

— Why MBQC?
- Interesting primitives (feedforward)

- Intermediate language for circuit optimisation [BMBdF*21]
- Applications (network scenarios, native algorithms)

— Why an MBQC software?

- Needed for our own research work
- No fully satisfactory solution [JD22, EOSR23, BD25]

— The team (research engineers, researchers, PhD students): Paris - Oxford - Tokyo

'é.. P
REPUBLIQUE -
FRANCA?SE hm‘

Structure of Graphix

Visualise
— Graph
— Correction sets

— Flow (causal, generalised,
Pauli)

— Pretty printing and latex
export

Density matrix
Tensor network

Symbolic

Manipulate & optimise

— Standardise, signal shifting
— Presimulate Pauli measure-

— Minimise resources

Circuit ZX diagram
N
Pattern
ments
~-
Simulate
— Statevector

Run
£ Qiskit

Highlights

Eg[‘lﬁ;gtinn Continued support from the Unitary Foundation

— September 2025: Talk at the International Workshop on Quantum Compilation 2025 in
Helsinki, Finland. Poster in 2024.

— More and more interest in the software: need to structure a developer and user
community

This workshop

— MBQC/infrastructure

Applications (what we have done with Graphix, what we think can be done)

- MBQC-native variational algorithms and quantum machine learning (M. Leonetti, L. Mantilla)
- Quantum error correction and fault-tolerance

- pseudorandomness (D. Markham)

- verification of QC and quantum cryptography (S. Abdul Sater, M. Inajetovic, L. Music)

Practicals and interaction

Graphix technical updates since last year’s workshop

— Flows

New features

Bug fixes

Developer experience improvements

Interfaces with other tools

Flows

September 22, 2025 19/34

m Pattern generation from Pauli Flow (#309)

og = graphix.opengraph.OpenGraph(graph, inputs,
outputs, ...)
og.to_pattern()

l

Yes < i 7si @
Pr.e = icor (Xt Zigtrion o M) Eche

Yes

_11< i i A
Pe.c = [Ticoe (ng<f>\{i}zcs>dd<g<i>>M") Falli

Yes < i i NOLY
Pec = itor (Xanousn Zassomnpusn M ™) Esi

Browne et al 2007 New J. Phys. 9 250 New feature!

September 22, 2025 |10/34

m Implementation of O(N?) Pauli-Flow finding algorithm (#337, under
review)

— Algebraic interpretation of Pauli flow (Piotr Mitosek’s last year talk!)

- Open graph expressed in terms of M, N (F2 matrices).

Correction function extracted from M1,

Partial order extracted from NM~1, a DAG.

Better complexity:
Gflow: O(N*) — O(N?®).
Pauli flow: O(N°) — O(N?).

Improved Graphix module for > linear algebra.

[Now we can find Pauli flow of open graphs with |N| ~ 10% in seconds instead of hours!

Mitosek and Backens, 2024, arXiv:2410.23439 ;

m Pattern and Open-graph composition (#320)

Pattern composition P, = P, o P,

— Pattern concatenation o renumbering.

Directed: output P1 — input P»

Pc, mapping = P1l.compose(P2, {0: 1})
- Py = X2Z2MoEo 1 No, Py = XS Z9MoEy oNo, Pe = X3 Z3 My Ey 2 No XY Z2 Mo Ep 1 No
Very useful for MBQC-VQE (M. Leonetti’s talk after the break and this afternoon’s discussions)

Open-graph composition
— Graph merging o renumbering (more general than pattern composition !).

— 0Gc, mapping = 0G1l.compose(0G2, {0: 3, 1: 43})

I=[0]
0=[2,5,8,9]

m Parametric patterns and symbolic reasoning (#158): 1/2

Motivations

— Most pattern analyses are uniform: they don’t care about actual angle values.
E.g., Transpilation, flows, standardization, depth, space.

— Various applications where the pattern structure is fixed and where only angles change.
E.g., Variational algorithms, brickwork universal graph-state.

m Parametric patterns and symbolic reasoning (#158): 2/2

Rotations in circuits and measures in patterns are now parameterized by values of type Angle.

Angle: TypeAlias = float | Expression

’class Expression‘

—
class SymbolicExpression
(external plugin, using sympy)

lclass Placeholder‘ ’class AffineExpression‘

. XY YZ,ZE —«
AffineExpression encompass Clifford absorption in measurements: e.g., Mg '* o ches = M, 2

Placeholders can be substituted with actual values with subst or xreplace (parallel substitution).

Application (see Marta's talk on VQE, today at 11.45am):

class Gadget:
pattern: Pattern
angles: tuple[Placeholder, ...]

m Transpilers (#142): 1/2 simpler transpiler

Theorem ([DKPO07])
MBQC is universal.

Proof.
- J(a)[i — o] = xio MX" =% 0 E; , 0 N, (one fresh ancilla node per J())
- NZ(ny,n2) = Ep ny

Constructive proof: transpiler from circuits to patterns.
https://github.com/qat-inria/graphix-jcz-transpiler

https://github.com/qat-inria/graphix-jcz-transpiler

m Transpilers (#142): 2/2 brickwork graph-state transpiler

Universal brickwork graph-state transpiler [BFK09]: https://github.com/qat-inria/gospel

- T =

Application: Implementation of VBQC with Veriphix (see Sami’s talk, tomorrow at 11.45am).

https://github.com/qat-inria/gospel

m API for noise models (#271): 1/3 patterns with noise commands

’ class CommandOrNoise (ABC) ‘

class ApplyNoise

noise: Noise

’ class Command (ABC) ‘ nodes: list[Nodel

class Nl lclass E‘ lclass M‘ lclass X‘ lclass Zl lclass Cl

--AQ(N)OM1O.Al(N)O~-~OA1,2(N)OEl,2®'~~OA1(N)ON1"'

Noise can appear before or after the ideal command and can be applied to other nodes
(e.g., neighbors).

m API for noise models (#271): 2/3 describing noise symbolically

class Noise (ABC)

def nqubits(self) -> int: ...
def to_kraus_channel (self) -> KrausChannel: ...

class DepolarisingNoise

prob: Probability

The density-matrix backend applies the noise using the Kraus channel.

Other backends can implement noises using the higher-level noise description (e.g., Stim backend).

m API for noise models (#271): 3/3 noise models as transpilers

class NoiseModel (ABC)

def input_nodes (self, nodes, rng=None) -> list[CommandOrNoise] : ...
def command(self, cmd: CommandOrNoise, rng=None) —-> list[CommandOrNoise]: ...
def confuse_result(self, cmd: M, result: Outcome, rng=None) -> Outcome: ...

def transpile(self, sequence, rng=None) -> list[CommandOrNoise]

class NVCenterNoiseModel

class DepolarisingNoiseModel‘ ’class ComposeNoiseModel . - .
Gospel project, afternoons’ discussion

Similar to circuit-centered packages:
noise models = transpilers from ideal patterns to noisy patterns.

m API for branch selection (#300)

Branch selector: N X P X P — {0,1}.
~ -

measured qubit expectation for 0 source of randomness

class BranchSelector (ABC)

def measure(self, qubit, f_exzpectationO: Callable[[], float], rng=None) -> Outcome: ...

class FixedBranchSelector

class RandomBranchSelector class ConstBranchSelector

results: Mapping[int, Outcome] Tosult: Dutcome
pr_calc: bool default: BranchSelector | None .

Applications:
— Exploring the same branch multiple times (e.g., to compare different backends).

— Complete branch space exploration (e.g., for testing edge cases).

Warning: division-by-zero when exploring 0-probability branches.

Fix pattern generation from graph-state (#283)

G — open graph — pattern

graph: nx.Graph = ...
og = OpenGraph(inside=graph, inputs=[], outputs=graph.nodes, measurements={})
pattern = og.to_pattern()

Pattern generation used to fail when measurements = () (no flow found).

Application: Graph-state preparation (see Marta's talk on VQE, today at 11.45am).

Fix standardization and local Clifford (#322)

Theorem ([DKPO7])

Every MBQC pattern can be rewritten in an equivalent pattern in standard form:

~—

byproduct corrections one-qubit measurements graph-state preparation

Z* o X* o M* o E* o N*
—_— ——

(“*" is the Kleene star: 0 or more)
Some Clifford gates do not commute with AZ.
E.g., there is no ancilla-free pattern of the form P o Ej 5 that is equivalent to Ey 5 0 C/.

The theorem does not hold in general in the MBQC+LC fragment, i.e., MBQC with the additionnal
Cf command, where c is an arbitrary one-qubit Clifford gate.

Now, standardization procedure correctly rewrites the pattern in standard form if it is possible
(even in presence of some Clifford gates), and fails if there is no standard form.

Consequence: Since Pauli presimulation necessarily introduces local Clifford, composing
Pauli-presimulated patterns with other patterns may lead to patterns that cannot be standardized.
Eg, 3(a)0 =1 =X oMyoEyi0N; =X o Cf oNj.

m Pretty-printing (#277)

>>> circuit = Circuit(1l)

>>> circuit.h(0)

>>> pattern = circuit.transpile().pattern
>>> print(str(pattern))

X(1,{0}) M(0) E(0,1) N(1) # compact and human readable
>>> print(repr(pattern))
Pattern(# copy-pastable Python code

input_nodes=[0], cmds=[N(1), E((0, 1)), M(0), X(1, {0})1,
output_nodes=[1]
)
>>> print(pattern.to_unicode())
X109 Mo Eo-1 N1 # even more compact and human readable
>>> print(pattern.to_latex())
\(X_{1}7{0}\,M {O}\,E_{0,1}\,N_{1}\) # copy-pastable in a LaTeX document

X? Mo Eo1 Nq

Fix Well-typed code base (#288, #302, #308, #312)

Most modules are now well-typed (mypy and pyright compliant).

Programs that use graphix can be type-checked.

Some internal modules, tests and examples are still untyped. Could be a easy and useful first
contribution!

Fix pyzx interface (#273)

The following diagram now commutes:

embedding . rewriting
circuit ZX-diagram pattern
transpilation imulation simulation
pattern state

simulation

m Symbolic plugin (#158)

Parameterized circuits and patterns can use sympy expressions as angles with the symbolic plugin:
https://github.com/TeamGraphix/graphix-symbolic
Symbolic patterns can even be simulated!
def test_parameter_circuit_simulation(fx_rng: Generator) -> None:
alpha = SympyParameter("alpha")
circuit = Circuit(1)
circuit.rz(0, alpha)
result_subs_then_simulate = (
circuit.subs(alpha, 0.5).simulate_statevector().statevec)
assert result_subs_then_simulate.psi.dtype == np.complex128
result_simulate_then_subs = (
circuit.simulate_statevector() .statevec.subs(alpha, 0.5))
assert np.allclose(
result_subs_then_simulate.psi, result_simulate_then_subs.psi)

. substitution
parameterized pattern —————— pattern

The following diagram commutes: simulationl lsimulation

symbolic state — state
substitution

https://github.com/TeamGraphix/graphix-symbolic

DB stim back-end (#150)

https://github.com/thierry-martinez/graphix-stim-backend
Efficient backend for patterns with Pauli measurements only.
Support for many (~ millions) shots. Support noise models (depolarising noise and Pauli noise).
Can be used to presimulate patterns:
def presimulate_pauli(pattern: Pattern) -> Pattern:
pattern.move_pauli_measurements_to_the_front ()
pauli_pattern, non_pauli_pattern = cut_pattern(pattern)
backend = StimBackend ()
measure_method = DefaultMeasureMethod()
pauli_pattern.simulate_pattern(backend, measure_method=measure_method)
output_node_set = set(pauli_pattern.output_nodes)
input_nodes = [node for node in pattern.input_nodes if node in output_node_set]
result_pattern = backend.to_pattern(input_nodes, non_pauli_pattern.input_nodes)
result_pattern.results = measure_method.results
result_pattern.extend(non_pauli_pattern)
return result_pattern

[Application: Fast sampling simulation of Clifford computation

https://github.com/thierry-martinez/graphix-stim-backend

m QASM parser (#70)

https://github.com/TeamGraphix/graphix-qasm-parser

from graphix_qasm_parser import OpenQASMParser
s = nmnn
include "gelibl.inc";
qubit q;
rz(5*pi/4) q;
parser = OpenQASMParser ()
circuit = parser.parse_str(s)
pattern = circuit.transpile().pattern
print (pattern)

The parser itself is automatically extracted from the OpenQASM specification (antlr4).

Applications: Benchmarking, comparisons with other frameworks.

https://github.com/TeamGraphix/graphix-qasm-parser

Device interfaces (#261)

Qiskit backend: https://github.com/TeamGraphix/graphix-ibmq

Perceval backend: see Luka's talk tomorrow at 10.45.

https://github.com/TeamGraphix/graphix-ibmq

Conclusion & practicalities

— Graphix
— Practicalities

- Coffee breaks are on the 3rd floor
- Lunche are on the 3rd floor (menu will be passed around)
- Dinner at 7:30 pm across the street

Acknowledgements

Thank you!

Contributors
Sami Abdul Sater (Paris), William Cashman (Oxford), Masato Fukushima (Tokyo), Maxime Garnier

(Paris), Benjamin Guichard, Thierry Martinez (Paris), Rajarsi Pal (Paris), Sora Shiratani (Tokyo),
Shinichi Sunami (Oxford), Mateo Uldemolins (Paris)

FRANCE

.
Unitany QuanliP)

References |

@ Greg Bowen and Simon Devitt. tiQ: a design and modelling tool for cluster-state algorithms, 2025.

@ Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum computation.
In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, page 517-526. |EEE,
October 2009.

B Daniel E. Browne, Elham Kashefi, Mehdi Mhalla, and Simon Perdrix. Generalized flow and
determinism in measurement-based quantum computation. New Journal of Physics, 9(8):250, aug
2007.

Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski, and John van de
Wetering. There and back again: A circuit extraction tale. Quantum, 5:421, March 2021.

Nov 2006.

@ Vincent Danos and Elham Kashefi. Determinism in the one-way model. Phys. Rev. A, 74:052310,
@ Vincent Danos, Elham Kashefi, and Prakash Panangaden. The measurement calculus, 2007.

Aidan Evans, Seun Omonije, Robert Soulé, and Robert Rand. MCBeth: A Measurement-based
Quantum Programming Language. In 2023 [EEE/ACM 4th International Workshop on Quantum
Software Engineering (Q-SE), pages 1-8, 2023.

September 22, 2025

References 11

September 22, 2025

Bus Joost and Radoica Draski¢. Measurement-based quantum computation, 2022.
https://pennylane.ai/qml/demos/tutorial_mbqc, accessed 10 July 2025.

Piotr Mitosek and Miriam Backens. An algebraic interpretation of Pauli flow, leading to faster
flow-finding algorithms, 2024.

Mehdi Mhalla and Simon Perdrix. Finding optimal flows efficiently. In Luca Aceto, lvan Damgard,
Leslie Ann Goldberg, Magnis M. Halldérsson, Anna Ingélfsdéttir, and Igor Walukiewicz, editors,
Automata, Languages and Programming, pages 857—868, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

Mehdi Mhalla, Simon Perdrix, and Luc Sanselme. Shadow Pauli Flow: Characterising Determinism
in MBQCs involving Pauli Measurements. arXiv:2207.09368, 2022.

Simon Perdrix and Luc Sanselme. Determinism and computational power of real
measurement-based quantum computation. In Ralf Klasing and Marc Zeitoun, editors,

Fundamentals of Computation Theory, pages 395-408, Berlin, Heidelberg, 2017. Springer Berlin
Heidelberg.

Robert Raussendorf and Hans J. Briegel. A one-way quantum computer. Phys. Rev. Lett.,
86:5188-5191, May 2001.

https://pennylane.ai/qml/demos/tutorial{_}mbqc

References Il

Will Simmons. Relating Measurement Patterns to Circuits via Pauli Flow. In Chris Heunen and

Miriam Backens, editors, Proceedings 18th International Conference on Quantum Physics and
Logic, Gdansk, Poland, and online, 7-11 June 2021, volume 343 of Electronic Proceedings in
Theoretical Computer Science, pages 50—101. Open Publishing Association, 2021.

September 22, 2025

| 34/34

	Graphix technical updates since last year workshop
	Flows
	New features
	Bug fixes
	Developer experience improvements
	Interface with other tools

