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Strong determinism: all computation branches are equal up to a global phase

Strongly deterministic patterns implement isometries

Robust determinism [PS17]: strong, uniform, stepwise
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[DK06, BKMP07, BMBdF 21, MPS22]
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Determinism and flow conditions

Strong determinism: all computation branches are equal up to a global phase

Strongly deterministic patterns implement isometries

Robust determinism [PS17]: strong, uniform, stepwise

Flow conditions: graphical conditions on open graphs (G, I, O, \)
[DK06, BKMP07, BMBdF 21, MPS22]

— Can be found in polynomial time [MPO08, BMBdF 21, Sim21, MPS22, MB24]
Causal ) Generahzed > ) Shadow
flow Pauli flow Pauli flow
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The Graphix project

— Why MBQC?
- Interesting primitives (feedforward)

- Intermediate language for circuit optimisation [BMBdF*21]
- Applications (network scenarios, native algorithms)

— Why an MBQC software?

- Needed for our own research work
- No fully satisfactory solution [JD22, EOSR23, BD25]

— The team (research engineers, researchers, PhD students): Paris - Oxford - Tokyo
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Structure of Graphix

Visualise
— Graph
— Correction sets

— Flow (causal, generalised,
Pauli)

— Pretty printing and latex
export

Density matrix
Tensor network

Symbolic

Manipulate & optimise

— Standardise, signal shifting
— Presimulate Pauli measure-

— Minimise resources

Circuit ZX diagram
N
Pattern
ments
~-
Simulate
— Statevector

Run
£ Qiskit



Highlights

Eg[‘lﬁ;gtinn Continued support from the Unitary Foundation

— September 2025: Talk at the International Workshop on Quantum Compilation 2025 in
Helsinki, Finland. Poster in 2024.

— More and more interest in the software: need to structure a developer and user
community



This workshop

— MBQC/infrastructure

Applications (what we have done with Graphix, what we think can be done)

- MBQC-native variational algorithms and quantum machine learning (M. Leonetti, L. Mantilla)
- Quantum error correction and fault-tolerance

- pseudorandomness (D. Markham)

- verification of QC and quantum cryptography (S. Abdul Sater, M. Inajetovic, L. Music)

Practicals and interaction



Graphix technical updates since last year’s workshop

— Flows

New features

Bug fixes

Developer experience improvements

Interfaces with other tools



Flows
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m Pattern generation from Pauli Flow (#309)

og = graphix.opengraph.OpenGraph(graph, inputs,
outputs, ...)
og.to_pattern()

l
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Browne et al 2007 New J. Phys. 9 250 New feature!
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m Implementation of O(N?) Pauli-Flow finding algorithm (#337, under
review)

— Algebraic interpretation of Pauli flow (Piotr Mitosek’s last year talk!)

- Open graph expressed in terms of M, N (F2 matrices).

Correction function extracted from M1,

Partial order extracted from NM~1, a DAG.

Better complexity:
Gflow: O(N*) — O(N?®).
Pauli flow: O(N°) — O(N?).

Improved Graphix module for > linear algebra.

[ Now we can find Pauli flow of open graphs with |N| ~ 10% in seconds instead of hours!

Mitosek and Backens, 2024, arXiv:2410.23439 ;



m Pattern and Open-graph composition (#320)

Pattern composition P, = P, o P,

— Pattern concatenation o renumbering.

Directed: output P1 — input P»

Pc, mapping = P1l.compose(P2, {0: 1})
- Py = X2Z2MoEo 1 No, Py = XS Z9MoEy oNo, Pe = X3 Z3 My Ey 2 No XY Z2 Mo Ep 1 No
Very useful for MBQC-VQE (M. Leonetti’s talk after the break and this afternoon’s discussions)

Open-graph composition
— Graph merging o renumbering (more general than pattern composition !).

— 0Gc, mapping = 0G1l.compose(0G2, {0: 3, 1: 43})

I=[0]
0=[2,5,8,9]



m Parametric patterns and symbolic reasoning (#158): 1/2

Motivations

— Most pattern analyses are uniform: they don’t care about actual angle values.
E.g., Transpilation, flows, standardization, depth, space.

— Various applications where the pattern structure is fixed and where only angles change.
E.g., Variational algorithms, brickwork universal graph-state.



m Parametric patterns and symbolic reasoning (#158): 2/2

Rotations in circuits and measures in patterns are now parameterized by values of type Angle.

Angle: TypeAlias = float | Expression

’class Expression‘

—
class SymbolicExpression
(external plugin, using sympy)

lclass Placeholder‘ ’class AffineExpression‘

. . . . . XY YZ,ZE —«
AffineExpression encompass Clifford absorption in measurements: e.g., Mg '* o ches = M, 2

Placeholders can be substituted with actual values with subst or xreplace (parallel substitution).

Application (see Marta's talk on VQE, today at 11.45am):

class Gadget:
pattern: Pattern
angles: tuple[Placeholder, ...]




m Transpilers (#142): 1/2 simpler transpiler

Theorem ([DKPO07])
MBQC is universal.

Proof.
- J(a)[i — o] = xio MX" =% 0 E; , 0 N, (one fresh ancilla node per J())
- NZ(ny,n2) = Ep ny

Constructive proof: transpiler from circuits to patterns.
https://github.com/qat-inria/graphix-jcz-transpiler



https://github.com/qat-inria/graphix-jcz-transpiler

m Transpilers (#142): 2/2 brickwork graph-state transpiler

Universal brickwork graph-state transpiler [BFK09]: https://github.com/qat-inria/gospel

- T =

Application: Implementation of VBQC with Veriphix (see Sami’s talk, tomorrow at 11.45am).



https://github.com/qat-inria/gospel

m API for noise models (#271): 1/3 patterns with noise commands

’ class CommandOrNoise (ABC) ‘

class ApplyNoise

noise: Noise

’ class Command (ABC) ‘ nodes: list[Nodel

class Nl lclass E‘ lclass M‘ lclass X‘ lclass Zl lclass Cl

--AQ(N)OM1O.Al(N)O~-~OA1,2(N)OEl,2®'~~OA1(N)ON1"'

Noise can appear before or after the ideal command and can be applied to other nodes
(e.g., neighbors).



m API for noise models (#271): 2/3 describing noise symbolically

class Noise (ABC)

def nqubits(self) -> int: ...
def to_kraus_channel (self) -> KrausChannel: ...

class DepolarisingNoise

prob: Probability

The density-matrix backend applies the noise using the Kraus channel.

Other backends can implement noises using the higher-level noise description (e.g., Stim backend).



m API for noise models (#271): 3/3 noise models as transpilers

class NoiseModel (ABC)

def input_nodes (self, nodes, rng=None) -> list[CommandOrNoise] : ...
def command(self, cmd: CommandOrNoise, rng=None) —-> list[CommandOrNoise]: ...
def confuse_result(self, cmd: M, result: Outcome, rng=None) -> Outcome: ...

def transpile(self, sequence, rng=None) -> list[CommandOrNoise]

class NVCenterNoiseModel

class DepolarisingNoiseModel‘ ’class ComposeNoiseModel . - .
Gospel project, afternoons’ discussion

Similar to circuit-centered packages:
noise models = transpilers from ideal patterns to noisy patterns.




m API for branch selection (#300)

Branch selector: N X P X P — {0,1}.
~ -

measured qubit  expectation for 0  source of randomness

class BranchSelector (ABC)

def measure(self, qubit, f_exzpectationO: Callable[[], float], rng=None) -> Outcome: ...

class FixedBranchSelector

class RandomBranchSelector class ConstBranchSelector

results: Mapping[int, Outcome] Tosult: Dutcome
pr_calc: bool default: BranchSelector | None .

Applications:
— Exploring the same branch multiple times (e.g., to compare different backends).

— Complete branch space exploration (e.g., for testing edge cases).

Warning: division-by-zero when exploring 0-probability branches.



Fix pattern generation from graph-state (#283)

G — open graph — pattern

graph: nx.Graph = ...
og = OpenGraph(inside=graph, inputs=[], outputs=graph.nodes, measurements={})
pattern = og.to_pattern()

Pattern generation used to fail when measurements = () (no flow found).

Application: Graph-state preparation (see Marta's talk on VQE, today at 11.45am).




Fix standardization and local Clifford (#322)

Theorem ([DKPO7])

Every MBQC pattern can be rewritten in an equivalent pattern in standard form:

~—

byproduct corrections  one-qubit measurements  graph-state preparation

Z* o X* o M* o E* o N*
—_— ——

(“*" is the Kleene star: 0 or more)
Some Clifford gates do not commute with AZ.
E.g., there is no ancilla-free pattern of the form P o Ej 5 that is equivalent to Ey 5 0 C/.

The theorem does not hold in general in the MBQC+LC fragment, i.e., MBQC with the additionnal
Cf command, where c is an arbitrary one-qubit Clifford gate.

Now, standardization procedure correctly rewrites the pattern in standard form if it is possible
(even in presence of some Clifford gates), and fails if there is no standard form.

Consequence: Since Pauli presimulation necessarily introduces local Clifford, composing
Pauli-presimulated patterns with other patterns may lead to patterns that cannot be standardized.
Eg, 3(a)0 =1 =X oMyoEyi0N; =X o Cf oNj.



m Pretty-printing (#277)

>>> circuit = Circuit(1l)

>>> circuit.h(0)

>>> pattern = circuit.transpile().pattern
>>> print(str(pattern))

X(1,{0}) M(0) E(0,1) N(1) # compact and human readable
>>> print(repr(pattern))
Pattern( # copy-pastable Python code

input_nodes=[0], cmds=[N(1), E((0, 1)), M(0), X(1, {0})1,
output_nodes=[1]
)
>>> print(pattern.to_unicode())
X109 Mo Eo-1 N1 # even more compact and human readable
>>> print(pattern.to_latex())
\(X_{1}7{0}\,M {O}\,E_{0,1}\,N_{1}\) # copy-pastable in a LaTeX document

X? Mo Eo1 Nq



Fix Well-typed code base (#288, #302, #308, #312)

Most modules are now well-typed (mypy and pyright compliant).

Programs that use graphix can be type-checked.

Some internal modules, tests and examples are still untyped. Could be a easy and useful first
contribution!



Fix pyzx interface (#273)

The following diagram now commutes:

embedding . rewriting
circuit ZX-diagram pattern
transpilation imulation simulation
pattern state

simulation



m Symbolic plugin (#158)

Parameterized circuits and patterns can use sympy expressions as angles with the symbolic plugin:
https://github.com/TeamGraphix/graphix-symbolic
Symbolic patterns can even be simulated!
def test_parameter_circuit_simulation(fx_rng: Generator) -> None:
alpha = SympyParameter("alpha")
circuit = Circuit(1)
circuit.rz(0, alpha)
result_subs_then_simulate = (
circuit.subs(alpha, 0.5).simulate_statevector().statevec)
assert result_subs_then_simulate.psi.dtype == np.complex128
result_simulate_then_subs = (
circuit.simulate_statevector() .statevec.subs(alpha, 0.5))
assert np.allclose(
result_subs_then_simulate.psi, result_simulate_then_subs.psi)

. substitution
parameterized pattern ——————  pattern

The following diagram commutes: simulationl lsimulation

symbolic state — state
substitution



https://github.com/TeamGraphix/graphix-symbolic

DB stim back-end (#150)

https://github.com/thierry-martinez/graphix-stim-backend
Efficient backend for patterns with Pauli measurements only.
Support for many (~ millions) shots. Support noise models (depolarising noise and Pauli noise).
Can be used to presimulate patterns:
def presimulate_pauli(pattern: Pattern) -> Pattern:
pattern.move_pauli_measurements_to_the_front ()
pauli_pattern, non_pauli_pattern = cut_pattern(pattern)
backend = StimBackend ()
measure_method = DefaultMeasureMethod()
pauli_pattern.simulate_pattern(backend, measure_method=measure_method)
output_node_set = set(pauli_pattern.output_nodes)
input_nodes = [node for node in pattern.input_nodes if node in output_node_set]
result_pattern = backend.to_pattern(input_nodes, non_pauli_pattern.input_nodes)
result_pattern.results = measure_method.results
result_pattern.extend(non_pauli_pattern)
return result_pattern

[ Application: Fast sampling simulation of Clifford computation



https://github.com/thierry-martinez/graphix-stim-backend

m QASM parser (#70)

https://github.com/TeamGraphix/graphix-qasm-parser

from graphix_qasm_parser import OpenQASMParser
s = nmnn
include "gelibl.inc";
qubit q;
rz(5*pi/4) q;
parser = OpenQASMParser ()
circuit = parser.parse_str(s)
pattern = circuit.transpile().pattern
print (pattern)

The parser itself is automatically extracted from the OpenQASM specification (antlr4).

Applications: Benchmarking, comparisons with other frameworks.



https://github.com/TeamGraphix/graphix-qasm-parser

Device interfaces (#261)

Qiskit backend: https://github.com/TeamGraphix/graphix-ibmq

Perceval backend: see Luka's talk tomorrow at 10.45.


https://github.com/TeamGraphix/graphix-ibmq

Conclusion & practicalities

— Graphix
— Practicalities

- Coffee breaks are on the 3rd floor
- Lunche are on the 3rd floor (menu will be passed around)
- Dinner at 7:30 pm across the street
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