An algebraic interpretation of Pauli flow, leading to faster flow-finding algorithms

Piotr Mitosek¹ Miriam Backens²

¹School of Computer Science, University of Birmingham, UK ²Inria & Loria, Nancy, France

18 November 2024

Introduction and reminder of earlier talk

• Graph states are resource states in MBQC,

- Graph states are resource states in MBQC,
- A graph state with a choice of measurement bases form a labelled open graph,

- Graph states are resource states in MBQC,
- A graph state with a choice of measurement bases form a labelled open graph,
- Robustly deterministic computation corresponds to the existence of Pauli flow on the labelled open graph,

- Graph states are resource states in MBQC,
- A graph state with a choice of measurement bases form a labelled open graph,
- Robustly deterministic computation corresponds to the existence of Pauli flow on the labelled open graph,
- Pauli flow is more general than (extended) generalized flow,

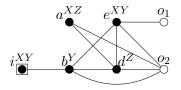
- Graph states are resource states in MBQC,
- A graph state with a choice of measurement bases form a labelled open graph,
- Robustly deterministic computation corresponds to the existence of Pauli flow on the labelled open graph,
- Pauli flow is more general than (extended) generalized flow,
- Pauli flow can be found in polynomial time,

- Graph states are resource states in MBQC,
- A graph state with a choice of measurement bases form a labelled open graph,
- Robustly deterministic computation corresponds to the existence of Pauli flow on the labelled open graph,
- Pauli flow is more general than (extended) generalized flow,
- Pauli flow can be found in polynomial time,
- Currently, polynomial time circuit extraction from ZX requires the diagram to exhibit Pauli flow.

Reminder - labelled open graphs

A <u>labelled open graph</u> is a tuple (G, I, O, λ) where:

- G = (V, E) is a simple graph,
- $I \subseteq V$ is a set of <u>inputs</u>,
- $O \subseteq V$ is a set of <u>outputs</u>,
- $\lambda: \overline{O} \to \{XY, YZ, XZ, X, Y, Z\}$ is a measurement labelling.



- A Pauli flow on a labelled open graph is a pair (c, \prec) where:
 - $c \colon \bar{O} \to \mathcal{P}(\bar{I})$ is a correction function,
 - \prec is a partial order on \bar{O} ,

satisfying many, many conditions...

- $\bullet \ \forall v \in c(u). u \neq v \land \lambda(v) \notin \{X,Y\} \Rightarrow u \prec v$
- $\forall v \in \text{Odd}(c(u)). u \neq v \land \lambda(v) \notin \{Y, Z\} \Rightarrow u \prec v$
- $\forall v \in \bar{O}. \neg (u \prec v) \land u \neq v \land \lambda(v) = Y \Rightarrow (v \in c(u) \Leftrightarrow v \in \text{Odd}(c(u)))$
- $\lambda(u) = XY \Rightarrow u \notin c(u) \land u \in \text{Odd}(c(u))$
- $\lambda(u) = XZ \Rightarrow u \in c(u) \land u \in \text{Odd}(c(u))$
- $\lambda(u) = YZ \Rightarrow u \in c(u) \land u \notin \text{Odd}(c(u))$
- $\lambda(u) = X \Rightarrow u \in \text{Odd}(c(u))$
- $\lambda(u) = Z \Rightarrow u \in c(u)$
- $\lambda(u) = Y \Rightarrow (u \in c(u) \oplus u \in \text{Odd}(c(u)))$, where \oplus stands for XOR.
- $\forall w \in (\bar{O} \setminus \{u\}) \cap c(u).\lambda(w) \in \{XY, X, Y\}$
- $\forall w \in (\bar{O} \setminus \{u\}) \cap \text{Odd}(c(u)).\lambda(w) \in \{XZ, YZ, Y, Z\}$
- $\forall w \in (\bar{O} \setminus \{u\}) . \lambda(w) = Y \Rightarrow (w \in c(u) \Leftrightarrow w \in \text{Odd}(c(u)))$

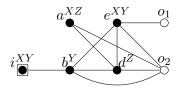
- $\bullet \ \forall v \in c(u). u \neq v \land \lambda(v) \notin \{X,Y\} \Rightarrow u \prec v$
- $\forall v \in \text{Odd}(c(u)). u \neq v \land \lambda(v) \notin \{Y, Z\} \Rightarrow u \prec v$
- $\bullet \ \forall v \in \bar{O}. \neg (u \prec v) \land u \neq v \land \lambda(v) = Y \Rightarrow (v \in c(u) \Leftrightarrow v \in \mathrm{Odd}(c(u)))$
- $\lambda(u) = XY \Rightarrow u \notin c(u) \land u \in \text{Odd}(c(u))$
- $\lambda(u) = XZ \Rightarrow u \in c(u) \land u \in \text{Odd}(c(u))$
- $\lambda(u) = YZ \Rightarrow u \in c(u) \land u \notin \text{Odd}(c(u))$
- $\lambda(u) = X \Rightarrow u \in \text{Odd}(c(u))$
- $\lambda(u) = Z \Rightarrow u \in c(u)$
- $\lambda(u) = Y \Rightarrow (u \in c(u) \oplus u \in \text{Odd}(c(u)))$, where \oplus stands for XOR.
- $\forall w \in (\bar{O} \setminus \{u\}) \cap c(u).\lambda(w) \in \{XY, X, Y\}$
- $\forall w \in (\bar{O} \setminus \{u\}) \cap \text{Odd}(c(u)).\lambda(w) \in \{XZ, YZ, Y, Z\}$
- $\forall w \in (\bar{O} \setminus \{u\}) . \lambda(w) = Y \Rightarrow (w \in c(u) \Leftrightarrow w \in \text{Odd}(c(u)))$

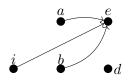
- $\bullet \ \forall v \in c(u). u \neq v \land \lambda(v) \notin \{X,Y\} \Rightarrow u \prec v$
- $\forall v \in \text{Odd}(c(u)). u \neq v \land \lambda(v) \notin \{Y, Z\} \Rightarrow u \prec v$
- $\bullet \ \forall v \in \bar{O}. \neg (u \prec v) \land u \neq v \land \lambda(v) = Y \Rightarrow (v \in c(u) \Leftrightarrow v \in \mathrm{Odd}(c(u)))$
- $\lambda(u) = XY \Rightarrow u \notin c(u) \land u \in \text{Odd}(c(u))$
- $\lambda(u) = XZ \Rightarrow u \in c(u) \land u \in \text{Odd}(c(u))$
- $\bullet \ \lambda(u) = YZ \Rightarrow u \in c(u) \land u \notin \mathrm{Odd}(c(u))$
- $\lambda(u) = X \Rightarrow u \in \text{Odd}(c(u))$
- $\lambda(u) = Z \Rightarrow u \in c(u)$
- $\lambda(u) = Y \Rightarrow (u \in c(u) \oplus u \in \text{Odd}(c(u)))$, where \oplus stands for XOR.
- $\forall w \in (\bar{O} \setminus \{u\}) \cap c(u).\lambda(w) \in \{XY, X, Y\}$
- $\forall w \in (\bar{O} \setminus \{u\}) \cap \text{Odd}(c(u)).\lambda(w) \in \{XZ, YZ, Y, Z\}$
- $\forall w \in (\bar{O} \setminus \{u\}) . \lambda(w) = Y \Rightarrow (w \in c(u) \Leftrightarrow w \in \text{Odd}(c(u)))$

- $\forall v \in c(u). u \neq v \land \lambda(v) \notin \{X, Y\} \Rightarrow u \prec v$
- $\forall v \in \text{Odd}(c(u)). u \neq v \land \lambda(v) \notin \{Y, Z\} \Rightarrow u \prec v$
- $\bullet \ \forall v \in \bar{O}. \neg (u \prec v) \land u \neq v \land \lambda(v) = Y \Rightarrow (v \in c(u) \Leftrightarrow v \in \mathrm{Odd}(c(u)))$
- $\bullet \ \lambda(u) = XY \Rightarrow u \notin c(u) \land u \in \mathrm{Odd}(c(u))$
- $\lambda(u) = XZ \Rightarrow u \in c(u) \land u \in \text{Odd}(c(u))$
- $\bullet \ \lambda(u) = YZ \Rightarrow u \in c(u) \land u \notin \mathrm{Odd}(c(u))$
- $\lambda(u) = X \Rightarrow u \in \text{Odd}(c(u))$
- $\lambda(u) = Z \Rightarrow u \in c(u)$
- $\lambda(u) = Y \Rightarrow (u \in c(u) \oplus u \in \text{Odd}(c(u)))$, where \oplus stands for XOR.
- $\forall w \in (\bar{O} \setminus \{u\}) \cap c(u).\lambda(w) \in \{XY, X, Y\}$
- $\forall w \in (\bar{O} \setminus \{u\}) \cap \text{Odd}(c(u)).\lambda(w) \in \{XZ, YZ, Y, Z\}$
- $\forall w \in (\bar{O} \setminus \{u\}) . \lambda(w) = Y \Rightarrow (w \in c(u) \Leftrightarrow w \in \text{Odd}(c(u)))$

- $\forall v \in c(u). u \neq v \land \lambda(v) \notin \{X, Y\} \Rightarrow u \prec v$
- $\forall v \in \text{Odd}(c(u)). u \neq v \land \lambda(v) \notin \{Y, Z\} \Rightarrow u \prec v$
- $\bullet \ \forall v \in \bar{O}. \neg (u \prec v) \land u \neq v \land \lambda(v) = Y \Rightarrow (v \in c(u) \Leftrightarrow v \in \mathrm{Odd}(c(u)))$
- $\bullet \ \lambda(u) = XY \Rightarrow u \notin c(u) \land u \in \mathrm{Odd}(c(u))$
- $\bullet \ \lambda(u) = XZ \Rightarrow u \in c(u) \land u \in \mathrm{Odd}(c(u))$
- $\bullet \ \lambda(u) = YZ \Rightarrow u \in c(u) \land u \notin \mathrm{Odd}(c(u))$
- $\lambda(u) = X \Rightarrow u \in \text{Odd}(c(u))$
- $\lambda(u) = Z \Rightarrow u \in c(u)$
- $\lambda(u) = Y \Rightarrow (u \in c(u) \oplus u \in \text{Odd}(c(u)))$, where \oplus stands for XOR.
- $\forall w \in (\bar{O} \setminus \{u\}) \cap c(u).\lambda(w) \in \{XY, X, Y\}$
- $\forall w \in (\bar{O} \setminus \{u\}) \cap \text{Odd}(c(u)).\lambda(w) \in \{XZ, YZ, Y, Z\}$
- $\bullet \ \forall w \in (\bar{O} \setminus \{u\}). \lambda(w) = Y \Rightarrow (w \in c(u) \Leftrightarrow w \in \mathrm{Odd}(c(u)))$

Pauli flow – example with flow





	$\mid \lambda$	c(v)	Odd(c(v))
i	XY	b, e, o_1	i,b,o_1
a	XZ	a, e, o_1, o_2	a,d,o_1
b	Y	e	b, d, o_1, o_2
e	XY	o_1	e
d	Z	d, o_2	d, o_2

- Pauli flow definition is very long and hard to work with.
- I Flow-finding algorithms have to solve many linear systems and hence are slow:
 - gflow finding runs in $\mathcal{O}(n^4)$,
 - Pauli flow finding runs in $\mathcal{O}(n^5)$.

1 Pauli flow definition is very long and hard to work with.

- Flow-finding algorithms have to solve many linear systems and hence are slow:
 - gflow finding runs in $\mathcal{O}(n^4)$,
 - Pauli flow finding runs in $\mathcal{O}(n^5)$.

- Pauli flow definition is very long and hard to work with.
- Flow-finding algorithms have to solve many linear systems and hence are slow:
 - gflow finding runs in $\mathcal{O}(n^4)$,
 - Pauli flow finding runs in $\mathcal{O}(n^5)$.

- Pauli flow definition is very long and hard to work with.
- Flow-finding algorithms have to solve many linear systems and hence are slow:
 - gflow finding runs in $\mathcal{O}(n^4)$,
 - Pauli flow finding runs in $\mathcal{O}(n^5)$.

This work:

- We propose a new algebraic interpretation of Pauli flow that simplifies conditions for flow existence.
- 2 We reduce complexity of Pauli flow-finding to $\mathcal{O}(n^3)$.

- **1** Pauli flow definition is very long and hard to work with.
- Flow-finding algorithms have to solve many linear systems and hence are slow:
 - gflow finding runs in $\mathcal{O}(n^4)$,
 - Pauli flow finding runs in $\mathcal{O}(n^5)$.

This work:

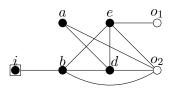
- We propose a new algebraic interpretation of Pauli flow that simplifies conditions for flow existence.
- 2 We reduce complexity of Pauli flow-finding to $\mathcal{O}(n^3)$.

- Pauli flow definition is very long and hard to work with.
- Flow-finding algorithms have to solve many linear systems and hence are slow:
 - gflow finding runs in $\mathcal{O}(n^4)$,
 - Pauli flow finding runs in $\mathcal{O}(n^5)$.

This work:

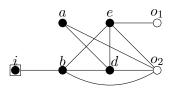
- We propose a new algebraic interpretation of Pauli flow that simplifies conditions for flow existence.
- **2** We reduce complexity of Pauli flow-finding to $\mathcal{O}(n^3)$.

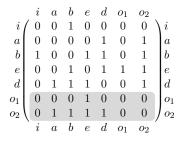
Algebraic interpretation of Pauli flow



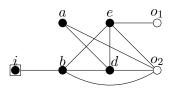
	i	a	b	e	d	o_1	o_2	
i	0	0	1	0	0	0	0	i
a	0	0	0	0	1	0	1	a
b	1	0	0	1	1	0	1	b
e	0	0	1	0	1	1	1	e
d	0	1	1	1	0	0	1	d
o_1	0	0	0	1	0	0	0	o_1
o_2	0	1	1	1	1	0	0	$\int o_2$
	ì	a	b	e	d	o_1	o_2	$ \left(\begin{array}{c} i \\ a \\ b \\ e \\ d \\ o_1 \\ o_2 \end{array}\right) $

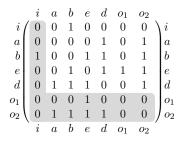
- Start with adjacency matrix
- Remove output rows
- Remove input columns



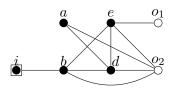


- Start with adjacency matrix
- Remove output rows
- Remove input columns





- Start with adjacency matrix
- Remove output rows
- Remove input columns



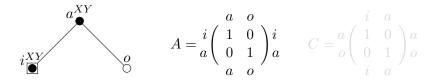
- Start with adjacency matrix
- Remove output rows
- Remove input columns

• Let $\Gamma = (G, I, O, \lambda)$ where $\lambda \equiv XY$.

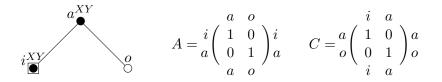
- Let A be the reduced adjacency matrix of Γ .
- Γ has gflow if and only if A has a right inverse C that is a DAG
- \bullet Columns of C encode the correction function.
- DAG formed by ${\boldsymbol C}$ encodes the partial order.

¹Mhalla et al. (2010), arXiv:1006.2616

- Let $\Gamma = (G, I, O, \lambda)$ where $\lambda \equiv XY$.
- Let A be the reduced adjacency matrix of Γ .
- Γ has gflow if and only if A has a right inverse C that is a DAG
- \bullet Columns of C encode the correction function.
- DAG formed by ${\boldsymbol C}$ encodes the partial order.



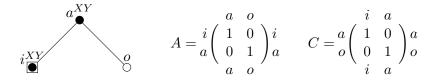
- Let $\Gamma = (G, I, O, \lambda)$ where $\lambda \equiv XY$.
- Let A be the reduced adjacency matrix of Γ .
- Γ has gflow if and only if A has a right inverse C that is a DAG
- Columns of C encode the correction function.
- \bullet DAG formed by C encodes the partial order.



Has gflow.

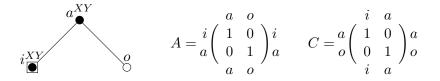
¹Mhalla et al. (2010), arXiv:1006.2616

- Let $\Gamma = (G, I, O, \lambda)$ where $\lambda \equiv XY$.
- Let A be the reduced adjacency matrix of Γ .
- Γ has gflow if and only if A has a right inverse C that is a DAG
- Columns of C encode the correction function.
- DAG formed by C encodes the partial order.



Has gflow.

- Let $\Gamma = (G, I, O, \lambda)$ where $\lambda \equiv XY$.
- Let A be the reduced adjacency matrix of Γ .
- Γ has gflow if and only if A has a right inverse C that is a DAG
- Columns of C encode the correction function.
- $\bullet\,$ DAG formed by C encodes the partial order.



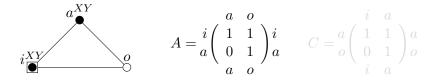
Has gflow.

¹Mhalla et al. (2010), arXiv:1006.2616

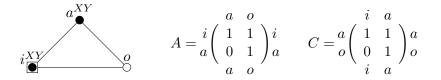
- Let $\Gamma = (G, I, O, \lambda)$ where $\lambda \equiv XY$.
- Let A be the reduced adjacency matrix of Γ .
- Γ has gflow if and only if A has a right inverse C that is a DAG
- Columns of C encode the correction function.
- $\bullet\,$ DAG formed by C encodes the partial order.

¹Mhalla et al. (2010), arXiv:1006.2616

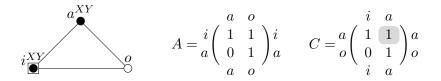
- Let $\Gamma = (G, I, O, \lambda)$ where $\lambda \equiv XY$.
- Let A be the reduced adjacency matrix of Γ .
- Γ has gflow if and only if A has a right inverse C that is a DAG
- Columns of C encode the correction function.
- $\bullet\,$ DAG formed by C encodes the partial order.



- Let $\Gamma = (G, I, O, \lambda)$ where $\lambda \equiv XY$.
- Let A be the reduced adjacency matrix of Γ .
- Γ has gflow if and only if A has a right inverse C that is a DAG
- Columns of C encode the correction function.
- $\bullet\,$ DAG formed by C encodes the partial order.

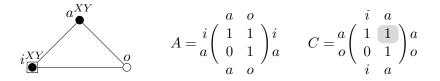


- Let $\Gamma = (G, I, O, \lambda)$ where $\lambda \equiv XY$.
- Let A be the reduced adjacency matrix of Γ .
- Γ has gflow if and only if A has a right inverse C that is a DAG
- Columns of C encode the correction function.
- $\bullet\,$ DAG formed by C encodes the partial order.



Previous algebraic interpretation – XY only case¹

- Let $\Gamma = (G, I, O, \lambda)$ where $\lambda \equiv XY$.
- Let A be the reduced adjacency matrix of Γ .
- Γ has gflow if and only if A has a right inverse C that is a DAG
- Columns of C encode the correction function.
- $\bullet\,$ DAG formed by C encodes the partial order.



No gflow.

¹Mhalla et al. (2010), arXiv:1006.2616

\bullet Presented version works only for $XY\mbox{-measurements}.$

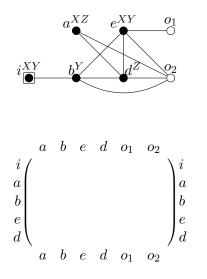
• Alternative for X and Z also exists.

• For all six types of measurements, we need something different.

- Presented version works only for XY-measurements.
- Alternative for X and Z also exists.

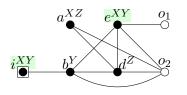
• For all six types of measurements, we need something different.

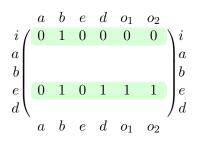
- Presented version works only for XY-measurements.
- Alternative for X and Z also exists.
- For all six types of measurements, we need something different.



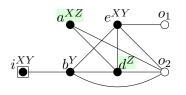
• Shape $\bar{O}\times\bar{I}$

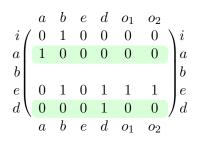
- Rows of XY, X: adjacency
- Rows of Z, YZ, XZ: only 1 at intersection
- Rows of *Y*: adjacency and 1 at intersection



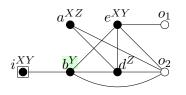


- Shape $\bar{O}\times\bar{I}$
- Rows of XY, X: adjacency
- Rows of Z, YZ, XZ: only 1 at intersection
- Rows of *Y*: adjacency and 1 at intersection





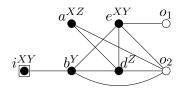
- Shape $\bar{O} \times \bar{I}$
- Rows of XY, X: adjacency
- Rows of Z, YZ, XZ: only 1 at intersection
- $\bullet \mbox{ Rows of } Y :$ adjacency and 1 at intersection



	a	b	e	d	o_1	o_2	
i/	0	1	0	0	0	0	i
a	1	0	0	0	0	0	a
b	0	1	1	1	0	0 0 1 1 0	b
e	0	1	0	1	1	1	e
$d \setminus$	0	0	0	1	0	0	d
	a	b	e	d	o_1	02	

- Shape $\bar{O}\times\bar{I}$
- Rows of XY, X: adjacency
- Rows of Z, YZ, XZ: only 1 at intersection
- Rows of Y: adjacency and 1 at intersection

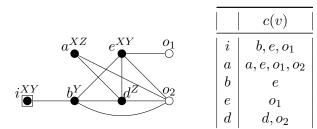
- Let $c \colon \bar{O} \to \mathcal{P}(\bar{I})$ be a candidate for correction function.
- We encode it into $\bar{I} \times \bar{O}$ matrix.
- Column of v in C represents c(v).



• Let $c \colon \bar{O} \to \mathcal{P}(\bar{I})$ be a candidate for correction function.

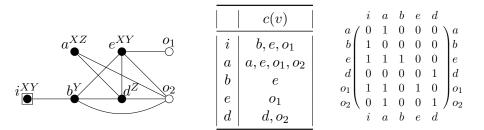
• We encode it into $\bar{I} \times \bar{O}$ matrix.

• Column of v in C represents c(v).

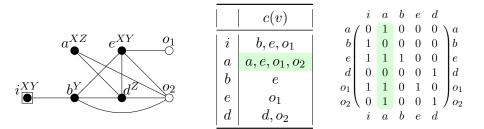


- Let $c \colon \bar{O} \to \mathcal{P}(\bar{I})$ be a candidate for correction function.
- We encode it into $\bar{I} \times \bar{O}$ matrix.

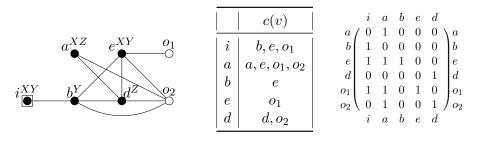
• Column of v in C represents c(v).



- Let $c \colon \bar{O} \to \mathcal{P}(\bar{I})$ be a candidate for correction function.
- We encode it into $\bar{I} \times \bar{O}$ matrix.
- Column of v in C represents c(v).



- Let $c \colon \bar{O} \to \mathcal{P}(\bar{I})$ be a candidate for correction function.
- We encode it into $\bar{I} \times \bar{O}$ matrix.
- Column of v in C represents c(v).



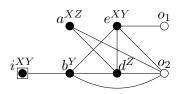
Claim

Flow-demand matrix M times correction matrix C equals identity if and only if \ldots

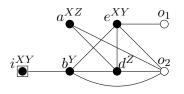
MC = Id conditions

For all $u \in \overline{O}$:

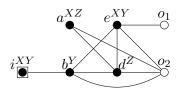
- $\forall v \in c(u). u \neq v \land \lambda(v) \notin \{X, Y\} \Rightarrow u \prec v$
- $\forall v \in \text{Odd}(c(u)). u \neq v \land \lambda(v) \notin \{Y, Z\} \Rightarrow u \prec v$
- $\forall v \in \bar{O}. \neg (u \prec v) \land u \neq v \land \lambda(v) = Y \Rightarrow (v \in c(u) \Leftrightarrow v \in \text{Odd}(c(u)))$
- $\lambda(u) = XY \Rightarrow u \notin c(u) \land u \in \text{Odd}(c(u))$
- $\lambda(u) = XZ \Rightarrow u \in c(u) \land u \in \text{Odd}(c(u))$
- $\lambda(u) = YZ \Rightarrow u \in c(u) \land u \notin Odd(c(u))$
- $\lambda(u) = X \Rightarrow u \in \text{Odd}(c(u))$
- $\lambda(u) = Z \Rightarrow u \in c(u)$
- $\lambda(u) = Y \Rightarrow (u \in c(u) \oplus u \in \text{Odd}(c(u)))$, where \oplus stands for XOR.
- $\forall w \in (\bar{O} \setminus \{u\}) \cap c(u).\lambda(w) \in \{XY, X, Y\}$
- $\forall w \in (\bar{O} \setminus \{u\}) \cap \text{Odd}(c(u)).\lambda(w) \in \{XZ, YZ, Y, Z\}$
- $\bullet \ \forall w \in (\bar{O} \setminus \{u\}). \lambda(w) = Y \Rightarrow (w \in c(u) \Leftrightarrow w \in \mathrm{Odd}(c(u)))$



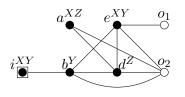
	$\mid \lambda$	c(v)	Odd(c(v))
i	XY	b, e, o_1	i,b,o_1
a	XZ	a, e, o_1, o_2	a, d, o_1
b	Y	e	b, d, o_1, o_2
e	XY	o_1	e
d	Z	d, o_2	d, o_2



	$\mid \lambda$	c(v)	Odd(c(v))
i	XY	b, e, o_1	i,b,o_1
a	XZ	a, e, o_1, o_2	a, d, o_1
b	Y	e	b, d, o_1, o_2
e	XY	o_1	e
d	Z	d, o_2	d, o_2

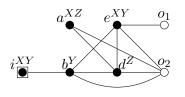


	λ	c(v)	Odd(c(v))
i	XY	b, e, o_1	i,b,o_1
a	XZ	a, e, o_1, o_2	a, d, o_1
b	Y	e	b, d, o_1, o_2
e	XY	o_1	e
d	Z	d, o_2	d, o_2



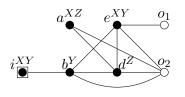
	$\mid \lambda$	c(v)	Odd(c(v))
i	XY	b, e, o_1	i,b,o_1
a	XZ	a, e, o_1, o_2	a, d, o_1
b	Y	e	b, d, o_1, o_2
e	XY	o_1	e
d	Z	d, o_2	d, o_2

iab edbdibede o_1 o_2 aa0 aa $\begin{array}{cccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}$ 1 0 000 i0 0 i $b \\ e \\ d$ i b 0 0 0 1 0 1 1 0 0 aaa $\begin{bmatrix} a \\ b \\ e \\ d \end{bmatrix}$ 0 eb 0 b0 b= 1 d1 0 0 0 0 1 1 0 e0 1 ee1 1 1 0 0 o_1 o_1 d d 0 0 0 0 1 0 0 0 0 1 d0 0 1 0 1 O_2 O_2 b bdd e o_1 iae o_2 abiaed



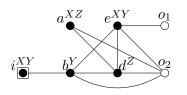
	λ	c(v)	Odd(c(v))
i	XY	b, e, o_1	i,b,o_1
a	XZ	a, e, o_1, o_2	a, d, o_1
b	Y	e	b, d, o_1, o_2
e	XY	o_1	e
d	Z	d, o_2	d, o_2

iab edbdibede o_1 o_2 aa $\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{array}$ 0 0 aa0 000 i 000 1 0 0 i $b \\ e \\ d$ i $\begin{array}{c} 1 \\ 1 \\ 0 \end{array}$ b 0 $\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}$ $\begin{array}{c} 1 \\ 0 \end{array}$ 1 0 1 1 0 0 0 aaa $\begin{bmatrix} a \\ b \\ e \\ d \end{bmatrix}$ 0 ebb 0 0 0 b1 d 1 0 0 1 1 0 0 0 e0 1 ee1 1 0 1 0 o_1 o_1 d d0 0 0 0 1 0 0 0 0 1 d0 0 1 0 1 o_2 O_2 b bdd e o_1 iae o_2 abiaed

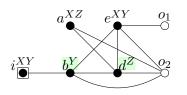


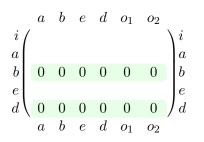
	$\mid \lambda$	c(v)	Odd(c(v))
i	XY	b, e, o_1	i,b,o_1
a	XZ	a, e, o_1, o_2	a, d, o_1
b	Y	e	b, d, o_1, o_2
e	XY	o_1	e
d	Z	d, o_2	d, o_2

$$\begin{smallmatrix} i & a & b & e & d & o_1 & o_2 \\ i & 0 & 1 & 0 & 0 & 0 & 0 \\ a & b & e & d & 0_1 & 0_1 \\ b & 0 & 1 & 1 & 1 & 0 & 1 \\ d & 0 & 0 & 0 & 1 & 1 & 1 \\ a & b & e & d & o_1 & 0_2 \end{smallmatrix} \right) \begin{smallmatrix} i & a & b & e & d \\ a & b & e \\ d & d & 0 \\ a & b & e & d & o_1 & 0_2 \end{smallmatrix} \right) \begin{smallmatrix} i & a & b & e & d \\ a & b & e \\ d & d \\ d &$$

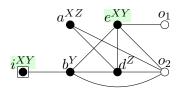


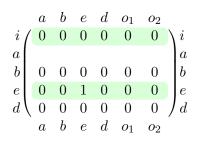
- Shape $\bar{O}\times\bar{I}$
- Rows of X, Y, Z: identically 0
- Rows of XY: only 1 at intersection
- Rows of YZ: adjacency
- Rows of XZ: adjacency and 1 at intersection



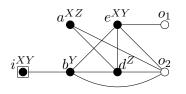


- Shape $\bar{O}\times\bar{I}$
- Rows of X, Y, Z: identically 0
- Rows of XY: only 1 at intersection
- Rows of YZ: adjacency
- Rows of XZ: adjacency and 1 at intersection



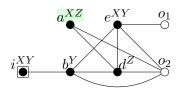


- Shape $\bar{O} \times \bar{I}$
- Rows of X, Y, Z: identically 0
- Rows of XY: only 1 at intersection
- Rows of YZ: adjacency
- Rows of XZ: adjacency and 1 at intersection



	a	b	e	d	o_1	o_2	
<i>i (</i>	0	0	0	0	0	0 0 0 0	i
a							a
b	0	0	0	0	0	0	b
e	0	0	1	0	0	0	e
$d \setminus$	0	0	0	0	0	0] d
	a	b	e	d	o_1	02	

- Shape $\bar{O}\times\bar{I}$
- Rows of X, Y, Z: identically 0
- Rows of XY: only 1 at intersection
- Rows of YZ: adjacency
- Rows of XZ: adjacency and 1 at intersection



	a	b	e	d	o_1	02	
i/	0	0	0	0	0	0 1 0 0 0	i
a	1	0	0	1	0	1	a
b	0	0	0	0	0	0	b
e	0	0	1	0	0	0	e
$d \setminus$	0	0	0	0	0	0	d
	a	b	e	d	o_1	02	

- Shape $\bar{O}\times\bar{I}$
- Rows of X, Y, Z: identically 0
- Rows of XY: only 1 at intersection
- Rows of YZ: adjacency
- Rows of $\boldsymbol{X}\boldsymbol{Z}:$ adjacency and 1 at intersection

Claim

Flow-demand matrix M times correction matrix C equals identity if and only if \ldots

Claim

Flow-demand matrix M times correction matrix C equals identity if and only if \ldots

Claim

Order-demand matrix N times correction matrix C forms a DAG if and only if \ldots

Claim

Flow-demand matrix M times correction matrix C equals identity if and only if \ldots

Claim

Order-demand matrix N times correction matrix C forms a DAG if and only if \ldots

Theorem

Given a labelled open graph Γ , let M be its flow-demand matrix and N its order-demand matrix. Then, Γ has Pauli flow if and only if there exists a correction matrix C such that MC = Id and NC forms a DAG.

Claim

Flow-demand matrix M times correction matrix C equals identity if and only if \ldots

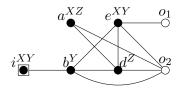
Claim

Order-demand matrix N times correction matrix C forms a DAG if and only if \ldots

Theorem

Given a labelled open graph Γ , let M be its flow-demand matrix and N its order-demand matrix. Then, Γ has Pauli flow if and only if there exists a correction matrix C such that MC = Id and NC forms a DAG.

Full example



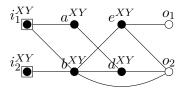
M	a	b	e	d	o_1	o_2	
i (0	1	0	0	0 0 0 1 0	0	i
a	1	0	0	0	0	0	a
b	0	1	1	1	0	1	b
e	0	1	0	1	1	1	e
$d \setminus$	0	0	0	1	0	0) d
	a	b	e	d	o_1	o_2	

Ν be d o_1 o_2 a0 ii $\begin{vmatrix} a \\ b \end{vmatrix}$ a1 b 0 0 ede0 0 0] d 0 0 0 bde o_1 o_2 a

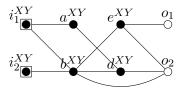
C	i	a	b	e	d
a	0	1	0	0	$0 \setminus a$
b	1	0	0	0	$0 \mid b$
e	1	1	1	0	$0 \mid e$
d	0	0	0	0	1 d
o_1	1	1	0	1	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{array} \right) \stackrel{a}{b} \\ e \\ d \\ o_1 \\ o_2 \end{array}$
o_2	0	1	0	0	$1 / o_2$
	i	a	b	e	d

$NC \\ i \\ a \\ b \\ e \\ d \\ \end{pmatrix}$	i	a	b	e	d	
i (0	0	0	0	0	i
a	0	0	0	0	0	a
b	0	0	0	0	0	b
e	1	1	1	0	0	e
$d \setminus$	0	0	0	0	0 /	d
	i	a	b	e	d	

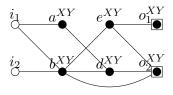
Using algebraic interpretation in proofs



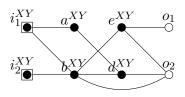
¹Mhalla et al. (2010), arXiv:1006.2616



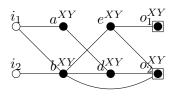
$\downarrow \mathsf{switch}\ I \ \mathsf{and}\ O \downarrow$



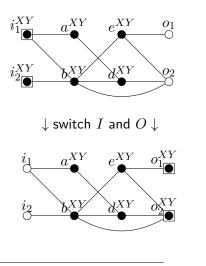
¹Mhalla et al. (2010), arXiv:1006.2616



 \downarrow switch I and $O\downarrow$



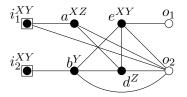
¹Mhalla et al. (2010), arXiv:1006.2616

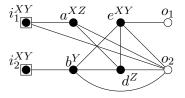


¹ Mhalla et al.	(2010),	arXiv:1006.2616
----------------------------	---------	-----------------

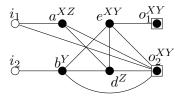
$\begin{pmatrix} a \\ b \\ e \end{pmatrix}$	$i_1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1$	1 (1 (0 1 0 1	$\begin{array}{cccc} a & b \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 & 0 \\ 0 & 0 \end{array}$	$e \\ 0 \\ 0 \\ 0 \\ 0 \\ 1$	$\begin{pmatrix} d \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$	$a \\ b \\ c \\ d \\ o_1$
<i>o</i> ₂ ($ \begin{array}{c} 1\\ i_1\\ \downarrow \end{array} $	$\begin{array}{ccc} 0 & 0 \\ i_2 & a \\ tran$) 0 a b 1spo	e^{0} se \downarrow	$\begin{pmatrix} 1 \\ d \end{pmatrix}$	0 ₂
$\begin{array}{c} i_1\\i_2\\a\\b\\e\\d\end{array} \begin{pmatrix} 1\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0$	1 0 1 1 0 0 0 0 0 0	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \end{array} $	0 0 1 0 0 0	1 1 0 0 1 1		$egin{array}{c} i_1 \ i_2 \ a \ b \ c \ d \end{array}$

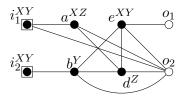
Flow-reversibility – any measurement labels



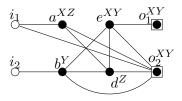


\downarrow switch I and $O\downarrow$

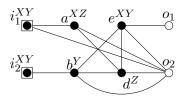




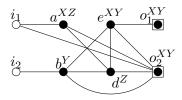
 \downarrow switch I and $O\downarrow$



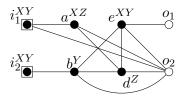
	i_1	i_2	a	b	e	d	
a (0	0	1	0	0	$0 \setminus a$	
b	0	1	0	0	0	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{array} \right) \begin{array}{c} a \\ b \\ e \\ d \\ o_1 \\ o_2 \end{array} $	
e	1	1	1	1	0	1 e	
d	0	0	0	0	0	1 d	
o_1	1	1	1	0	1	$1 o_1$	L
$o_2 \setminus$	1	0	1	0	0	$0 / o_2$	2
	i_1	i_2	a	b	e	d	



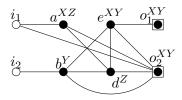
 \downarrow switch I and $O\downarrow$



$a \\ b \\ e \\ d$	$i_1 \\ 0 \\ 0 \\ 1 \\ 0$	$i_2 \\ 0 \\ 1 \\ 1 \\ 0$	a 1 0 1 0	. () (. 1) 0) 0 L 0	$egin{array}{c} d \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$ig _{a \ b \ e \ d}^{a}$
o_1	1	1	1			1	o_1
$o_2 \setminus$	1	0	1			0	$\int o_2$
	i_1	i_2	a	ı l	b e	d	
\downarrow							\downarrow
	a	b	e	d	o_1	o_2	
i_1	1	0	1	0	1	1	i_1
i_2	0	1	1	0	1	0	i_2
a	1	0	0	0	0	0	a
b	0	0	1	1	0	0	$\begin{bmatrix} a \\ b \\ c \end{bmatrix}$
e	0	0	0	0	1	0	c
$d \setminus$	0	0	0	1	0	0) d
	a	b	e	d	o_1	o_2	

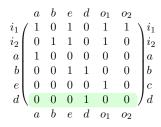


 \downarrow switch I and $O\downarrow$



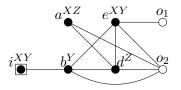
	i_1	i_2	a	b	e	d	
a	0	0	1	0	0	0	a
b	0	1	0	0	0	0	b
e	1	1	1	1	0	1	e
d	0	0	0	0	0	1	d
o_1	1	1	1	0	1	1	o_1
o_2	$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot$	0	1	0	0	0	$ _{o_2}$
	i_1	i_2	a	b	e	d	

 \downarrow not just transpose \downarrow



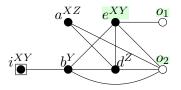
• Some stabilizers have trivial net effect on correction.

- Such stabilizers are determined by focused sets.
- Focused sets are parametrized by kernel of flow-demand matrix.

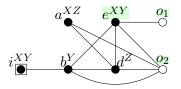


• Some stabilizers have trivial net effect on correction.

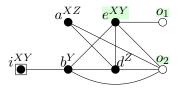
- Such stabilizers are determined by focused sets.
- Focused sets are parametrized by kernel of flow-demand matrix.



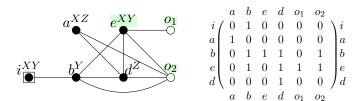
- Some stabilizers have trivial net effect on correction.
- Such stabilizers are determined by focused sets.
- Focused sets are parametrized by kernel of flow-demand matrix.



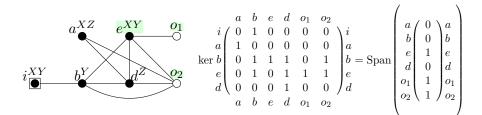
- Some stabilizers have trivial net effect on correction.
- Such stabilizers are determined by focused sets.
- Focused sets are parametrized by kernel of flow-demand matrix.



- Some stabilizers have trivial net effect on correction.
- Such stabilizers are determined by focused sets.
- Focused sets are parametrized by kernel of flow-demand matrix.



- Some stabilizers have trivial net effect on correction.
- Such stabilizers are determined by focused sets.
- Focused sets are parametrized by kernel of flow-demand matrix.



Finding flow

Flow-finding problem

Input: a labelled open graph $\Gamma = (G, I, O, \lambda)$. **Output:** (c, \prec) forming Pauli flow on Γ or a message that no such flow exists.

- \bullet The problem is already known to be in $\mathrm{P},$
- The existing algorithm complexity is $\mathcal{O}(n^5)$.

Flow-finding problem

Input: a labelled open graph $\Gamma = (G, I, O, \lambda)$. **Output:** (c, \prec) forming Pauli flow on Γ or a message that no such flow exists.

- The problem is already known to be in P,
- The existing algorithm complexity is $\mathcal{O}(n^5)$.

Flow-finding problem

Input: a labelled open graph $\Gamma = (G, I, O, \lambda)$. **Output:** (c, \prec) forming Pauli flow on Γ or a message that no such flow exists.

- The problem is already known to be in P,
- The existing algorithm complexity is $\mathcal{O}(n^5)$.

Theorem

- Flow-demand matrix M has shape $\bar{O} \times \bar{I}$.
- When |I| = |O| then M is square.
- Hence if C such that MC = Id exists, then C is unique.

Theorem

- Flow-demand matrix M has shape $\bar{O} \times \bar{I}$.
- When |I| = |O| then M is square.
- Hence if C such that MC = Id exists, then C is unique.

Theorem

- Flow-demand matrix M has shape $\bar{O} \times \bar{I}$.
- When |I| = |O| then M is square.
- Hence if C such that MC = Id exists, then C is unique.

Theorem

- Flow-demand matrix M has shape $\bar{O} \times \bar{I}$.
- When |I| = |O| then M is square.
- Hence if C such that MC = Id exists, then C is unique.

Given a labelled open graph:

${\small \bigcirc}$ Compute the flow-demand matrix M and the order-demand matrix N.

- ② Compute a unique inverse C of M.
 - \bullet Output "No flow" if C does not exist.
- Compute *NC*.
- Check if NC is a DAG.
 - $\bullet\,$ Output "No flow" if NC is not a DAG.

(a) Output correction matrix C and matrix of the induced order NC.

Given a labelled open graph:

- $\label{eq:compute the flow-demand matrix} M \text{ and the order-demand matrix } N.$
- **2** Compute a unique inverse C of M.
 - $\bullet\,$ Output "No flow" if C does not exist.
- Compute NC.
- Check if NC is a DAG.
 - \bullet Output "No flow" if NC is not a DAG.

If \mathbb{O} Output correction matrix C and matrix of the induced order NC.

Given a labelled open graph:

- **2** Compute a unique inverse C of M.
 - $\bullet\,$ Output "No flow" if C does not exist.
- Compute NC.
- Check if NC is a DAG.
 - \bullet Output "No flow" if NC is not a DAG.

(a) Output correction matrix C and matrix of the induced order NC.

Given a labelled open graph:

- **2** Compute a unique inverse C of M.
 - $\bullet\,$ Output "No flow" if C does not exist.
- Compute NC.
- Oneck if NC is a DAG.
 - $\bullet~$ Output "No flow" if NC is not a DAG.

\bigcirc Output correction matrix C and matrix of the induced order NC.

Given a labelled open graph:

- **2** Compute a unique inverse C of M.
 - $\bullet\,$ Output "No flow" if C does not exist.
- Compute NC.
- Oneck if NC is a DAG.
 - Output "No flow" if NC is not a DAG.

\bigcirc Output correction matrix C and matrix of the induced order NC.

Given a labelled open graph:

- 2 Compute a unique inverse C of M.
 - Output "No flow" if C does not exist.
- Compute NC.
- Oneck if NC is a DAG.
 - Output "No flow" if NC is not a DAG.
- **(a)** Output correction matrix C and matrix of the induced order NC.

Time complexity is dominated by matrix inverse and matrix multiplication:

- naïve approach $\mathcal{O}(n^3)$,
- Strassen algorithm $\sim \mathcal{O}(n^{2.8})$.

Given a labelled open graph:

- 2 Compute a unique inverse C of M.
 - Output "No flow" if C does not exist.
- Compute NC.
- Oneck if NC is a DAG.
 - Output "No flow" if NC is not a DAG.
- **(a)** Output correction matrix C and matrix of the induced order NC.

Time complexity is dominated by matrix inverse and matrix multiplication:

- naïve approach $\mathcal{O}(n^3)$,
- Strassen algorithm $\sim \mathcal{O}(n^{2.8})$.

Given a labelled open graph:

- 2 Compute a unique inverse C of M.
 - Output "No flow" if C does not exist.
- Compute NC.
- Oneck if NC is a DAG.
 - Output "No flow" if NC is not a DAG.
- **(a)** Output correction matrix C and matrix of the induced order NC.

Time complexity is dominated by matrix inverse and matrix multiplication:

- naïve approach $\mathcal{O}(n^3)$,
- Strassen algorithm $\sim \mathcal{O}(n^{2.8})$.

• Let M be any $m \times m$ matrix over \mathbb{F}_2 .

- Let $I = \{i_1, \dots, i_m\}$, $O = \{o_1, \dots, o_m\}$, and $V = I \cup O$.
- Let E correspond to M, i.e. $i_u o_v \in E$ if and only if $M_{u,v} = 1$.

• Let
$$\lambda(v) = X$$
 for $v \in I = \overline{O}$.

- Then the labelled open graph $((V, E), I, O, \lambda)$ has flow-demand matrix M.
- \bullet Hence it has Pauli flow if and only if M is invertible.

- Let M be any $m \times m$ matrix over \mathbb{F}_2 .
- Let $I = \{i_1, \dots, i_m\}$, $O = \{o_1, \dots, o_m\}$, and $V = I \cup O$.
- Let E correspond to M, i.e. $i_u o_v \in E$ if and only if $M_{u,v} = 1$.
- Let $\lambda(v) = X$ for $v \in I = \overline{O}$.
- Then the labelled open graph $((V, E), I, O, \lambda)$ has flow-demand matrix M.
- Hence it has Pauli flow if and only if M is invertible.

- Let M be any $m \times m$ matrix over \mathbb{F}_2 .
- Let $I = \{i_1, \dots, i_m\}$, $O = \{o_1, \dots, o_m\}$, and $V = I \cup O$.
- Let E correspond to M, i.e. $i_u o_v \in E$ if and only if $M_{u,v} = 1$.
- Let $\lambda(v) = X$ for $v \in I = \overline{O}$.
- Then the labelled open graph $((V, E), I, O, \lambda)$ has flow-demand matrix M.
- Hence it has Pauli flow if and only if M is invertible.

- Let M be any $m \times m$ matrix over \mathbb{F}_2 .
- Let $I = \{i_1, \dots, i_m\}$, $O = \{o_1, \dots, o_m\}$, and $V = I \cup O$.
- Let E correspond to M, i.e. $i_u o_v \in E$ if and only if $M_{u,v} = 1$.

• Let
$$\lambda(v) = X$$
 for $v \in I = \overline{O}$.

- Then the labelled open graph $((V, E), I, O, \lambda)$ has flow-demand matrix M.
- Hence it has Pauli flow if and only if M is invertible.

- Let M be any $m \times m$ matrix over \mathbb{F}_2 .
- Let $I = \{i_1, \dots, i_m\}$, $O = \{o_1, \dots, o_m\}$, and $V = I \cup O$.
- Let E correspond to M, i.e. $i_u o_v \in E$ if and only if $M_{u,v} = 1$.

• Let
$$\lambda(v) = X$$
 for $v \in I = \overline{O}$.

- \bullet Then the labelled open graph $((V,E),I,O,\lambda)$ has flow-demand matrix M.
- \bullet Hence it has Pauli flow if and only if M is invertible.

- Let M be any $m \times m$ matrix over \mathbb{F}_2 .
- Let $I = \{i_1, \dots, i_m\}$, $O = \{o_1, \dots, o_m\}$, and $V = I \cup O$.
- Let E correspond to M, i.e. $i_u o_v \in E$ if and only if $M_{u,v} = 1$.

• Let
$$\lambda(v) = X$$
 for $v \in I = \overline{O}$.

- Then the labelled open graph $((V,E),I,O,\lambda)$ has flow-demand matrix M.
- Hence it has Pauli flow if and only if M is invertible.

• We construct flow-demand matrix M and order-demand matrix N.

- Problem: find C such that MC = Id and NC is a DAG.
- When |I| < |O|, there can be $2^{(n-|O|)(|O|-|I|)}$ many matrices C such that MC = Id.
- We cannot check NC for all such C.

- We construct flow-demand matrix M and order-demand matrix N.
- Problem: find C such that MC = Id and NC is a DAG.
- When |I| < |O|, there can be $2^{(n-|O|)(|O|-|I|)}$ many matrices C such that MC = Id.
- We cannot check NC for all such C.

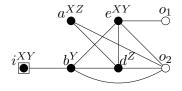
- We construct flow-demand matrix M and order-demand matrix N.
- Problem: find C such that MC = Id and NC is a DAG.
- When |I| < |O|, there can be $2^{(n-|O|)(|O|-|I|)}$ many matrices C such that MC = Id.

• We cannot check NC for all such C.

- We construct flow-demand matrix M and order-demand matrix N.
- Problem: find C such that MC = Id and NC is a DAG.
- When |I| < |O|, there can be $2^{(n-|O|)(|O|-|I|)}$ many matrices C such that MC = Id.
- We cannot check NC for all such C.

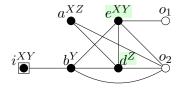
We modify a layer-by-layer approach used in previous flow-finding algorithms:

- Solve *some* linear system to find and correct vertices last in the order.
- Next, construct another linear system to find and correct vertices second to last in the order.
- And so on...



We modify a layer-by-layer approach used in previous flow-finding algorithms:

- Solve *some* linear system to find and correct vertices last in the order.
- Next, construct another linear system to find and correct vertices second to last in the order.
- And so on...

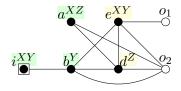


Last layer:
$$e, d$$

We modify a layer-by-layer approach used in previous flow-finding algorithms:

- Solve *some* linear system to find and correct vertices last in the order.
- Next, construct another linear system to find and correct vertices second to last in the order.

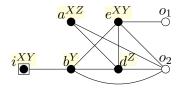
• And so on...



Last layer:e,dSecond to last layer:i,a,b

We modify a layer-by-layer approach used in previous flow-finding algorithms:

- Solve *some* linear system to find and correct vertices last in the order.
- Next, construct another linear system to find and correct vertices second to last in the order.
- And so on...

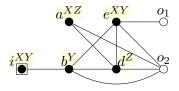


Last layer: e,dSecond to last layer: i,a,b

We modify a layer-by-layer approach used in previous flow-finding algorithms:

- Solve *some* linear system to find and correct vertices last in the order.
- Next, construct another linear system to find and correct vertices second to last in the order.
- And so on...

<u>Our improvement</u>: instead of constructing a new system for each layer, we adjust the previous system, skipping Gaussian elimination.



Last layer: e,dSecond to last layer: i,a,b

• The original definition of Pauli flow is hard to work with.

- For a given labelled open graph $\Gamma,$ we defined flow-demand matrix M and order-demand matrix N.
- We showed, that Γ has Pauli flow if and only if MC = Id and NC is a DAG for some matrix C.
- We used this algebraic interpretation to lower the complexity bound for the flow-finding problem.

- The original definition of Pauli flow is hard to work with.
- For a given labelled open graph $\Gamma,$ we defined flow-demand matrix M and order-demand matrix N.
- We showed, that Γ has Pauli flow if and only if MC = Id and NC is a DAG for some matrix C.
- We used this algebraic interpretation to lower the complexity bound for the flow-finding problem.

- The original definition of Pauli flow is hard to work with.
- For a given labelled open graph $\Gamma,$ we defined flow-demand matrix M and order-demand matrix N.
- We showed, that Γ has Pauli flow if and only if MC = Id and NC is a DAG for some matrix C.
- We used this algebraic interpretation to lower the complexity bound for the flow-finding problem.

- The original definition of Pauli flow is hard to work with.
- For a given labelled open graph $\Gamma,$ we defined flow-demand matrix M and order-demand matrix N.
- We showed, that Γ has Pauli flow if and only if MC = Id and NC is a DAG for some matrix C.
- We used this algebraic interpretation to lower the complexity bound for the flow-finding problem.

• Is there an algebraic interpretation for other notions of MBQC?

• Can we find new flow-preserving rules?

- Given an unlabelled open graph, can we find interesting measurement labels resulting in Pauli flow?
- Can we speed up circuit extraction?

- Is there an algebraic interpretation for other notions of MBQC?
- Can we find new flow-preserving rules?
- Given an unlabelled open graph, can we find interesting measurement labels resulting in Pauli flow?
- Can we speed up circuit extraction?

- Is there an algebraic interpretation for other notions of MBQC?
- Can we find new flow-preserving rules?
- Given an unlabelled open graph, can we find interesting measurement labels resulting in Pauli flow?
- Can we speed up circuit extraction?

- Is there an algebraic interpretation for other notions of MBQC?
- Can we find new flow-preserving rules?
- Given an unlabelled open graph, can we find interesting measurement labels resulting in Pauli flow?
- Can we speed up circuit extraction?

Thank you!