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Reminder of earlier talk

@ Graph states are resource states in MBQC,

@ A graph state with a choice of measurement bases form a labelled
open graph,

@ Robustly deterministic computation corresponds to the existence of
Pauli flow on the labelled open graph,

e Pauli flow is more general than (extended) generalized flow,
@ Pauli flow can be found in polynomial time,

o Currently, polynomial time circuit extraction from ZX requires the
diagram to exhibit Pauli flow.

3/34



Reminder — labelled open graphs

A labelled open graph is a tuple (G, I,0O,\) where:

e G = (V,E) is a simple graph,

e I CVis a set of inputs,

@ O C V is a set of outputs,

o \: 0= {XY,YZ,XZ X,Y,Z} is a measurement labelling.

XZ XY

XY Y 09
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Reminder — Pauli flow

A Pauli flow on a labelled open graph is a pair (¢, <) where:

e c: O — P(I) is a correction function,

@ — is a partial order on O,

satisfying many, many conditions. . .
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o Vo e O ~(u<v)Au#vAANv) =Y = (v € c(u) & v e 0dd(c(u)))
o A\Nu)=XY = u¢c(u) ANu € Odd(c(u))

@ MNu)=XZ = ue€clu)Au e Odd(c(u))
(w)=YZ = u € c(u) ANu ¢ Odd(c(u))

e \Nu) =X = u e 0dd(c(u))
(u)
(u)

°
>
<
I

o \Nu)=2=ucc(u)
o \Nu)=Y = (u € c(u) ®ue 0dd(c(u))), where & stands for XOR.
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(Focused) Pauli flow conditions

For all u € O:
o YWwec(u)u#AvAAv) ¢ {X,Y}=>u=<v
e Vv € Odd(c(u))u#vAAv)¢{Y,Z} = u=<v
o Vo e O ~(u<v)Au#vAANv) =Y = (v € c(u) & v e 0dd(c(u)))
o A\Nu)=XY = u¢c(u) ANu € Odd(c(u))

@ MNu)=XZ = ue€clu)Au e Odd(c(u))

o \Nu)=YZ=ucc(u)ANu¢ O0dd(c(u))

o A\Nu) =X = u e 0dd(c(u))

o \Nu)=2Z=ucc(u)

o \Nu)=Y = (u € c(u) ®ue 0dd(c(u))), where & stands for XOR.
o Vw € (O \ {u}) Nec(u).\w) € {XY,X,Y}

o Vw € (O\ {u}) NOdd(c(u))\Nw) € {XZ,YZ,Y, 7}

o Vwe (O\ {u})MNw) =Y = (w € c(u) & w € 0dd(c(u)))
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Pauli flow — example with flow

Xz XY o

XY v 05 ‘ ‘ A ‘ c(v) ‘ Odd(c(v))
'@ ) :
1| XY | bye 0 1,b,01
a| XZ |a,e, 01,09 a,d, o1
a . bl Y e b,d, 01,092
e | XY 01 e
d Z d, 02 d, 02
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Issues with Pauli flow

© Pauli flow definition is very long and hard to work with.

@ Flow-finding algorithms have to solve many linear systems and hence
are slow:

o gflow finding runs in O(n?),
o Pauli flow finding runs in O(n?).

This work:

@ We propose a new algebraic interpretation of Pauli flow that simplifies
conditions for flow existence.

@ We reduce complexity of Pauli flow-finding to O(n?).
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Algebraic interpretation of Pauli flow
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Reduced Adjacency Matrix

@ Start with adjacency matrix

@ Remove output rows

i a b e d o o9
if0 0 1 0 0 0 0 \z .
dooooi1 o1 la @ Remove input columns
bl 1 0 01 1 0 1 |b
el 001 01 1 1 e
dl o1 110 0 1 d
o] 00O 0O1 0 0 0 Joi
oo\0 1 1 1 1 0 0 /o9
i a b e d o 09
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Reduced Adjacency Matrix

@ Start with adjacency matrix

@ Remove output rows

a b e d o1 o09
t1/0 1 0 O | 0 0 \:¢ @ Remove input columns
al 000 1|0 1 |a
bl 0 0 1 1|0 1 |[b
el 01 0 1|1 1 [e
d\1 1 1 0|0 1 /d
a b e d o1 09
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Previous algebraic interpretation — XY only case’

o Let I' = (G,1,0,)\) where A = XY

'Mhalla et al. (2010), arXiv:1006.2616
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Previous algebraic interpretation — XY only case’

o Let I' = (G,1,0,)\) where A = XY
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a a o i a
1 ; 1
gl 0 \z C:a
XY o a\ 0 1 Ja 0 0
a o i a
Has gflow.
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Previous algebraic interpretation — XY only case’

o Let I' = (G,1,0,)\) where A = XY
@ Let A be the reduced adjacency matrix of I

o I has gflow if and only if A has a right inverse C that is a DAG
@ Columns of C encode the correction function.

°

DAG formed by C encodes the partial order.

a a o 7 a
1 1\ 1
lXY o a a 0] o
a o T a
No gflow.

'Mhalla et al. (2010), arXiv:1006.2616
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Other measurements
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Other measurements

@ Presented version works only for XY -measurements.
o Alternative for X and Z also exists.

@ For all six types of measurements, we need something different.
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Flow-demand matrix

oXZ XY o

XY Y, 09 @ Shape O x I

QU O Q=
QAL o =
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Flow-demand matrix

Xz XY o

XY v 09 @ Shape O x I

@ Rows of XY, X: adjacency

QU O S .
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Flow-demand matrix

oXZ XY 01
i)[éy Y, 09 @ Shape O x I
@ Rows of XY, X: adjacency
@ Rows of Z,YZ, XZ: only 1 at
a b e d o 09 intersection
i/0 1 0 0 0 0 \i¢
al 1 00 0 0 |a
b b
el 01 01 1 1 [e
d\ 0 0 1 d
a b e d o o9
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Flow-demand matrix

oXZ XY 01
i)[éy Y 09 @ Shape O x I
@ Rows of XY, X: adjacency
@ Rows of Z,YZ, XZ: only 1 at
a b e d o1 o intersection
i/0 1 0 0 0 0 \4
al T 00 0 0 0 |a @ Rows of Y: adjacency and 1 at
bl 0 1 1 1 0 1 |b intersection
el 01 01 1 1 e
d\0 0 01 0 0 /)d
a b e d o o9
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Correction matrix

Xz XY o

XY gy 09
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Correction matrix

o Let c: O — P(I) be a candidate for correction function.

RO
aX? XY 01 ) b,e, 01
a|a,e,o01,02
XY Y 09 b €
(@ e 01
d d, 09
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Correction matrix

o Let c: O — P(I) be a candidate for correction function.
@ We encode it into I x O matrix.

“C(U) ‘ i a b e d

a/0 100 0\a

aX? XY 0 il be o bl 100 0 0 |b
a|a,e, o109 el 11100 |e

b . al o000 1ld

Z'XY bY 09 ool 1 1 01 0 Joy
@ e o1 0o\0 100 1)
d d, 09 i a b e d
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Correction matrix

o Let c: O — P(I) be a candidate for correction function.
@ We encode it into I x O matrix.
@ Column of v in C' represents c(v).

“C(U) ‘ i a b e d

a/0 100 0\a

aX? XY 0 il be o bl 10 0 0 0 |b
al|ae 01,00 el 11100 |e

b . al 0000 1ld

Z'XY bY 09 ool 1 1 01 0 Joy
@ e o1 0o\0 100 1/)o0
d d, 09 i a b e d
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Correction matrix

o Let c: O — P(I) be a candidate for correction function.
@ We encode it into I x O matrix.
@ Column of v in C' represents c(v).

‘ ‘ c(v) ‘ i ab e d

a/0 1 0 0 0\a

aX? XY 0 il be o bl 100 0 0 |b

ala,e o100 el 11100 |e

b e dl 00 00 1 |d

Z'XY bY 09 ool 1 1 01 0 Joy

O e o1 0o\ 0 100 1)o0m
d d, 09 i a b e d

Flow-demand matrix M times correction matrix C' equals identity if and
only if ...
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MC = Id conditions

For all u € O:

)=XY = u € Odd(c(u))
)=XZ = ue€ c(u)
)=YZ = uc€c(u)
) =X = u € 0dd(c(u))
(u) Z:>u€c()
) = (u € ¢(u) ®u € 0dd(c(u))), where @ stands for XOR.
€ O\{u})ﬂc() AMw) € {XY, X,Y}
€ (0\ {u}) NOdd(e(v))Nw) € {XZ,YZ,Y,Z}
c (0O\ {u}).MNw) =Y = (w € c¢(u) & w € 0dd(c(u)))

—_ = = H
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] A ew) | Odd(e(v)) |

Xz XY o

1| XY | be 0 i,b, 01

a| XZ |a,e, o1,09 a,d, o
XY Y 0 bl Y e b,d,o1,0
1 b 2 s 0y, 01, 02
® e | XY 01 e

d Z d,02 d,OQ
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A | cv) | Odd(c(v)) |

a € 1| XY | be 0 i,b, 01
a| XZ | aeo01,00| a,d,o
i)é}y by, 02 b| Y e b,d, 01,09
e | XY 01 e
d| Z d, 09 d, 02
a b e d o1 o9
/0 1 0 0 0 0\
al 1T 0 00 0 0 Ja
bl 0 1 1.1 0 1 |b
el 01 01 1 1 |e
d\0 0 01 0 0 /d
a b e d o1 o9
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Order-demand matrix

oXZ XY o

Xy gy 0 o Shape O x I

QU O Q=
QAL o =
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Order-demand matrix

Xz XY o

@ Shape O x I

@ Rows of X,Y, Z: identically 0

QL O Q=
=
=
(an)
=
=
(an)
QUL O o =
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Order-demand matrix

XZ XY

@ Shape O x I

@ Rows of X,Y, Z: identically 0

@ Rows of XY: only 1 at intersection

i/0 0 0 0 0 0 \z

a a

bl 0 0 0 0 O O |b

el] 001 0 0 0 ]Je

d\0 0 00 0 0 /d
a b e d o o9
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Order-demand matrix

Xz XY o

Shape O x I

@ Rows of X,Y, Z: identically 0
@ Rows of XY: only 1 at intersection

@ Rows of Y Z: adjacency

i/0 0 0 0 0 0 \z

a a

bl 0 0 0 0 O O |b

el 001 0 0 0 Je

d\0 0 00 0 0 /d
a b e d o o9
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Order-demand matrix

oXZ XY 01
@ Shape O x I
XY Y 0
e b 2
@ Rows of X,Y, Z: identically 0
@ Rows of XY: only 1 at intersection
a b e d o o9 L
i/0 000 0 0N\i @ Rows of Y Z: adjacency
al 1.0 0 1 0 1 ja @ Rows of XZ: adjacency and 1 at
bf 0000 0 0 b intersection
el 001 0 0 0 Je
d\0 0 0 0 0 0 /d
a b e d o o9
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Full picture

Flow-demand matrix M times correction matrix C' equals identity if and
only if ...
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Using algebraic interpretation in proofs
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Previous flow-reversibility — XY only case!

'Mhalla et al. (2010), arXiv:1006.2616
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Previous flow-reversibility — XY only case!

ihw i a b e d
a/ 1 1 0 0 0 O0\a
bl 0 1 0 0 0 O |b
el 1 0 1 1 0 1 e
dl 0 01 00 0 |d
ool 1 1 001 1 |ou
oo\1 0 0 0 0 1 /o
il i2 a b e d

'Mhalla et al. (2010), arXiv:1006.2616
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Previous flow-reversibility — XY only case!

ihw i a b e d
a/f1 1 0 0 0 0\a
b 0 1 0 0 0 0 |b
el 1 0 1 1 0 1 e
dl 0 01 00 0 |d
of 1 1 001 1 oy
o2\'1 0 0 0 0 1 /oo

il i2 a b e d

J transpose |

a b e d o o9
ir /1 01 0 1 1\%¢
il 1100 1 0 |is
al 0 0O1 1 0 0 |a
bl 0 0 1. 0 0 0O |b
el 0 000 1 0 ]Jec
d\0 0 1 0 1 1 /d

a b e d o o9

'Mhalla et al. (2010), arXiv:1006.2616
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@ Some stabilizers have trivial net effect on correction.
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@ Some stabilizers have trivial net effect on correction.
@ Such stabilizers are determined by focused sets.

o Focused sets are parametrized by kernel of flow-demand matrix.

a b e d o o9
aX? XY o i/0 100 0 0\i
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@ Some stabilizers have trivial net effect on correction.
@ Such stabilizers are determined by focused sets.

o Focused sets are parametrized by kernel of flow-demand matrix.
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Flow-finding problem

Input: a labelled open graph T = (G, 1,0, ).
Output: (c, <) forming Pauli flow on T or a message that no such
flow exists.
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Flow-finding problem

Input: a labelled open graph T = (G, 1,0, ).
Output: (c, <) forming Pauli flow on T or a message that no such
flow exists.

@ The problem is already known to be in P,

e The existing algorithm complexity is O(n°).
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Algebraic interpretation

Given a labelled open graph T', let M be its flow-demand matrix and N its
order-demand matrix. Then, I' has Pauli flow if and only if there exists a
correction matrix C' such that MC = Id and NC forms a DAG.

26/34



Algebraic interpretation

Given a labelled open graph T', let M be its flow-demand matrix and N its
order-demand matrix. Then, I' has Pauli flow if and only if there exists a
correction matrix C' such that MC = Id and NC forms a DAG.

o Flow-demand matrix M has shape O x I.

26/34



Algebraic interpretation

Given a labelled open graph T', let M be its flow-demand matrix and N its
order-demand matrix. Then, I' has Pauli flow if and only if there exists a
correction matrix C' such that MC = Id and NC forms a DAG.

o Flow-demand matrix M has shape O x I.

e When |I| = |O] then M is square.

26/34



Algebraic interpretation

Given a labelled open graph T', let M be its flow-demand matrix and N its
order-demand matrix. Then, I' has Pauli flow if and only if there exists a
correction matrix C' such that MC = Id and NC forms a DAG.

o Flow-demand matrix M has shape O x I.
e When |I| = |O] then M is square.

@ Hence if C such that M C = Id exists, then C is unique.
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Case |I| = |O|

Given a labelled open graph:

@ Compute the flow-demand matrix M and the order-demand matrix V.
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Case |I| = |O|

Given a labelled open graph:

@ Compute the flow-demand matrix M and the order-demand matrix V.
@ Compute a unique inverse C of M.
o Output “No flow” if C' does not exist.

© Compute NC.
@ Check if NC'is a DAG.
e Output “No flow” if NC' is not a DAG.

@ Output correction matrix C' and matrix of the induced order NC.
Time complexity is dominated by matrix inverse and matrix multiplication:

@ naive approach O(n?),

e Strassen algorithm ~ O(n?3).
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o Let M be any m x m matrix over Fs.
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o Let M be any m x m matrix over Fs.
o Let I ={i1,...,im}, O=A{o1,...,0m}, and V=TUO.
@ Let F correspond to M, i.e. i,0, € E if and only if M, , = 1.

o Let A(v) =X forvel=0.

@ Then the labelled open graph ((V, E), 1,0, \) has flow-demand
matrix M.

@ Hence it has Pauli flow if and only if M is invertible.
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General case

@ We construct flow-demand matrix M and order-demand matrix N.
@ Problem: find C such that M C = Id and NC' is a DAG.

o When |I| < |O], there can be 2"~ 1OD(OI=I1) many matrices C' such

that MC = Id.

@ We cannot check NC for all such C.
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General case — cont.

We modify a layer-by-layer approach used in previous flow-finding
algorithms:
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General case — cont.

We modify a layer-by-layer approach used in previous flow-finding
algorithms:

@ Solve some linear system to find and correct vertices last in the order.

@ Next, construct another linear system to find and correct vertices
second to last in the order.

@ And so on...

Our improvement: instead of constructing a new system for each layer, we
adjust the previous system, skipping Gaussian elimination.

Last layer: e, d
XY by, 09 Second to last layer: i,a,b
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@ The original definition of Pauli flow is hard to work with.

o For a given labelled open graph I, we defined flow-demand matrix M
and order-demand matrix N.

@ We showed, that I' has Pauli flow if and only if MC = Id and NC'is
a DAG for some matrix C.

@ We used this algebraic interpretation to lower the complexity bound
for the flow-finding problem.
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Is there an algebraic interpretation for other notions of MBQC?

Can we find new flow-preserving rules?

@ Given an unlabelled open graph, can we find interesting measurement
labels resulting in Pauli flow?

@ Can we speed up circuit extraction?
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