
An algebraic interpretation of Pauli flow, leading to
faster flow-finding algorithms

Piotr Mitosek1 Miriam Backens2

1School of Computer Science, University of Birmingham, UK
2Inria & Loria, Nancy, France

18 November 2024

1 / 34

Introduction and reminder of earlier talk

2 / 34

Reminder of earlier talk

Graph states are resource states in MBQC,

A graph state with a choice of measurement bases form a labelled
open graph,

Robustly deterministic computation corresponds to the existence of
Pauli flow on the labelled open graph,

Pauli flow is more general than (extended) generalized flow,

Pauli flow can be found in polynomial time,

Currently, polynomial time circuit extraction from ZX requires the
diagram to exhibit Pauli flow.

3 / 34

Reminder of earlier talk

Graph states are resource states in MBQC,

A graph state with a choice of measurement bases form a labelled
open graph,

Robustly deterministic computation corresponds to the existence of
Pauli flow on the labelled open graph,

Pauli flow is more general than (extended) generalized flow,

Pauli flow can be found in polynomial time,

Currently, polynomial time circuit extraction from ZX requires the
diagram to exhibit Pauli flow.

3 / 34

Reminder of earlier talk

Graph states are resource states in MBQC,

A graph state with a choice of measurement bases form a labelled
open graph,

Robustly deterministic computation corresponds to the existence of
Pauli flow on the labelled open graph,

Pauli flow is more general than (extended) generalized flow,

Pauli flow can be found in polynomial time,

Currently, polynomial time circuit extraction from ZX requires the
diagram to exhibit Pauli flow.

3 / 34

Reminder of earlier talk

Graph states are resource states in MBQC,

A graph state with a choice of measurement bases form a labelled
open graph,

Robustly deterministic computation corresponds to the existence of
Pauli flow on the labelled open graph,

Pauli flow is more general than (extended) generalized flow,

Pauli flow can be found in polynomial time,

Currently, polynomial time circuit extraction from ZX requires the
diagram to exhibit Pauli flow.

3 / 34

Reminder of earlier talk

Graph states are resource states in MBQC,

A graph state with a choice of measurement bases form a labelled
open graph,

Robustly deterministic computation corresponds to the existence of
Pauli flow on the labelled open graph,

Pauli flow is more general than (extended) generalized flow,

Pauli flow can be found in polynomial time,

Currently, polynomial time circuit extraction from ZX requires the
diagram to exhibit Pauli flow.

3 / 34

Reminder of earlier talk

Graph states are resource states in MBQC,

A graph state with a choice of measurement bases form a labelled
open graph,

Robustly deterministic computation corresponds to the existence of
Pauli flow on the labelled open graph,

Pauli flow is more general than (extended) generalized flow,

Pauli flow can be found in polynomial time,

Currently, polynomial time circuit extraction from ZX requires the
diagram to exhibit Pauli flow.

3 / 34

Reminder – labelled open graphs

A labelled open graph is a tuple (G, I, O, λ) where:
G = (V, E) is a simple graph,
I ⊆ V is a set of inputs,
O ⊆ V is a set of outputs,
λ : Ō → {XY, Y Z, XZ, X, Y, Z} is a measurement labelling.

aXZ eXY o1

o2dZbYiXY

4 / 34

Reminder – Pauli flow

A Pauli flow on a labelled open graph is a pair (c, ≺) where:
c : Ō → P(Ī) is a correction function,
≺ is a partial order on Ō,

satisfying many, many conditions. . .

5 / 34

(Focused) Pauli flow conditions

For all u ∈ Ō:
∀v ∈ c(u).u ̸= v ∧ λ(v) /∈ {X, Y } ⇒ u ≺ v

∀v ∈ Odd(c(u)).u ̸= v ∧ λ(v) /∈ {Y, Z} ⇒ u ≺ v

∀v ∈ Ō.¬(u ≺ v) ∧ u ̸= v ∧ λ(v) = Y ⇒ (v ∈ c(u) ⇔ v ∈ Odd(c(u)))
λ(u) = XY ⇒ u /∈ c(u) ∧ u ∈ Odd(c(u))
λ(u) = XZ ⇒ u ∈ c(u) ∧ u ∈ Odd(c(u))
λ(u) = Y Z ⇒ u ∈ c(u) ∧ u /∈ Odd(c(u))
λ(u) = X ⇒ u ∈ Odd(c(u))
λ(u) = Z ⇒ u ∈ c(u)
λ(u) = Y ⇒ (u ∈ c(u) ⊕ u ∈ Odd(c(u))), where ⊕ stands for XOR.
∀w ∈ (Ō \ {u}) ∩ c(u).λ(w) ∈ {XY, X, Y }
∀w ∈ (Ō \ {u}) ∩ Odd(c(u)).λ(w) ∈ {XZ, Y Z, Y, Z}
∀w ∈ (Ō \ {u}).λ(w) = Y ⇒ (w ∈ c(u) ⇔ w ∈ Odd(c(u)))

6 / 34

(Focused) Pauli flow conditions

For all u ∈ Ō:
∀v ∈ c(u).u ̸= v ∧ λ(v) /∈ {X, Y } ⇒ u ≺ v

∀v ∈ Odd(c(u)).u ̸= v ∧ λ(v) /∈ {Y, Z} ⇒ u ≺ v

∀v ∈ Ō.¬(u ≺ v) ∧ u ̸= v ∧ λ(v) = Y ⇒ (v ∈ c(u) ⇔ v ∈ Odd(c(u)))
λ(u) = XY ⇒ u /∈ c(u) ∧ u ∈ Odd(c(u))
λ(u) = XZ ⇒ u ∈ c(u) ∧ u ∈ Odd(c(u))
λ(u) = Y Z ⇒ u ∈ c(u) ∧ u /∈ Odd(c(u))
λ(u) = X ⇒ u ∈ Odd(c(u))
λ(u) = Z ⇒ u ∈ c(u)
λ(u) = Y ⇒ (u ∈ c(u) ⊕ u ∈ Odd(c(u))), where ⊕ stands for XOR.
∀w ∈ (Ō \ {u}) ∩ c(u).λ(w) ∈ {XY, X, Y }
∀w ∈ (Ō \ {u}) ∩ Odd(c(u)).λ(w) ∈ {XZ, Y Z, Y, Z}
∀w ∈ (Ō \ {u}).λ(w) = Y ⇒ (w ∈ c(u) ⇔ w ∈ Odd(c(u)))

6 / 34

(Focused) Pauli flow conditions

For all u ∈ Ō:
∀v ∈ c(u).u ̸= v ∧ λ(v) /∈ {X, Y } ⇒ u ≺ v

∀v ∈ Odd(c(u)).u ̸= v ∧ λ(v) /∈ {Y, Z} ⇒ u ≺ v

∀v ∈ Ō.¬(u ≺ v) ∧ u ̸= v ∧ λ(v) = Y ⇒ (v ∈ c(u) ⇔ v ∈ Odd(c(u)))
λ(u) = XY ⇒ u /∈ c(u) ∧ u ∈ Odd(c(u))
λ(u) = XZ ⇒ u ∈ c(u) ∧ u ∈ Odd(c(u))
λ(u) = Y Z ⇒ u ∈ c(u) ∧ u /∈ Odd(c(u))
λ(u) = X ⇒ u ∈ Odd(c(u))
λ(u) = Z ⇒ u ∈ c(u)
λ(u) = Y ⇒ (u ∈ c(u) ⊕ u ∈ Odd(c(u))), where ⊕ stands for XOR.
∀w ∈ (Ō \ {u}) ∩ c(u).λ(w) ∈ {XY, X, Y }
∀w ∈ (Ō \ {u}) ∩ Odd(c(u)).λ(w) ∈ {XZ, Y Z, Y, Z}
∀w ∈ (Ō \ {u}).λ(w) = Y ⇒ (w ∈ c(u) ⇔ w ∈ Odd(c(u)))

6 / 34

(Focused) Pauli flow conditions

For all u ∈ Ō:
∀v ∈ c(u).u ̸= v ∧ λ(v) /∈ {X, Y } ⇒ u ≺ v

∀v ∈ Odd(c(u)).u ̸= v ∧ λ(v) /∈ {Y, Z} ⇒ u ≺ v

∀v ∈ Ō.¬(u ≺ v) ∧ u ̸= v ∧ λ(v) = Y ⇒ (v ∈ c(u) ⇔ v ∈ Odd(c(u)))
λ(u) = XY ⇒ u /∈ c(u) ∧ u ∈ Odd(c(u))
λ(u) = XZ ⇒ u ∈ c(u) ∧ u ∈ Odd(c(u))
λ(u) = Y Z ⇒ u ∈ c(u) ∧ u /∈ Odd(c(u))
λ(u) = X ⇒ u ∈ Odd(c(u))
λ(u) = Z ⇒ u ∈ c(u)
λ(u) = Y ⇒ (u ∈ c(u) ⊕ u ∈ Odd(c(u))), where ⊕ stands for XOR.
∀w ∈ (Ō \ {u}) ∩ c(u).λ(w) ∈ {XY, X, Y }
∀w ∈ (Ō \ {u}) ∩ Odd(c(u)).λ(w) ∈ {XZ, Y Z, Y, Z}
∀w ∈ (Ō \ {u}).λ(w) = Y ⇒ (w ∈ c(u) ⇔ w ∈ Odd(c(u)))

6 / 34

(Focused) Pauli flow conditions

For all u ∈ Ō:
∀v ∈ c(u).u ̸= v ∧ λ(v) /∈ {X, Y } ⇒ u ≺ v

∀v ∈ Odd(c(u)).u ̸= v ∧ λ(v) /∈ {Y, Z} ⇒ u ≺ v

∀v ∈ Ō.¬(u ≺ v) ∧ u ̸= v ∧ λ(v) = Y ⇒ (v ∈ c(u) ⇔ v ∈ Odd(c(u)))
λ(u) = XY ⇒ u /∈ c(u) ∧ u ∈ Odd(c(u))
λ(u) = XZ ⇒ u ∈ c(u) ∧ u ∈ Odd(c(u))
λ(u) = Y Z ⇒ u ∈ c(u) ∧ u /∈ Odd(c(u))
λ(u) = X ⇒ u ∈ Odd(c(u))
λ(u) = Z ⇒ u ∈ c(u)
λ(u) = Y ⇒ (u ∈ c(u) ⊕ u ∈ Odd(c(u))), where ⊕ stands for XOR.
∀w ∈ (Ō \ {u}) ∩ c(u).λ(w) ∈ {XY, X, Y }
∀w ∈ (Ō \ {u}) ∩ Odd(c(u)).λ(w) ∈ {XZ, Y Z, Y, Z}
∀w ∈ (Ō \ {u}).λ(w) = Y ⇒ (w ∈ c(u) ⇔ w ∈ Odd(c(u)))

6 / 34

Pauli flow – example with flow

aXZ eXY o1

o2dZbYiXY

a e

d
bi

λ c(v) Odd(c(v))

i XY b, e, o1 i, b, o1
a XZ a, e, o1, o2 a, d, o1
b Y e b, d, o1, o2
e XY o1 e
d Z d, o2 d, o2

7 / 34

Issues with Pauli flow

1 Pauli flow definition is very long and hard to work with.
2 Flow-finding algorithms have to solve many linear systems and hence

are slow:
gflow finding runs in O(n4),
Pauli flow finding runs in O(n5).

This work:
1 We propose a new algebraic interpretation of Pauli flow that simplifies

conditions for flow existence.
2 We reduce complexity of Pauli flow-finding to O(n3).

8 / 34

Issues with Pauli flow

1 Pauli flow definition is very long and hard to work with.
2 Flow-finding algorithms have to solve many linear systems and hence

are slow:
gflow finding runs in O(n4),
Pauli flow finding runs in O(n5).

This work:
1 We propose a new algebraic interpretation of Pauli flow that simplifies

conditions for flow existence.
2 We reduce complexity of Pauli flow-finding to O(n3).

8 / 34

Issues with Pauli flow

1 Pauli flow definition is very long and hard to work with.
2 Flow-finding algorithms have to solve many linear systems and hence

are slow:
gflow finding runs in O(n4),
Pauli flow finding runs in O(n5).

This work:
1 We propose a new algebraic interpretation of Pauli flow that simplifies

conditions for flow existence.
2 We reduce complexity of Pauli flow-finding to O(n3).

8 / 34

Issues with Pauli flow

1 Pauli flow definition is very long and hard to work with.
2 Flow-finding algorithms have to solve many linear systems and hence

are slow:
gflow finding runs in O(n4),
Pauli flow finding runs in O(n5).

This work:
1 We propose a new algebraic interpretation of Pauli flow that simplifies

conditions for flow existence.
2 We reduce complexity of Pauli flow-finding to O(n3).

8 / 34

Issues with Pauli flow

1 Pauli flow definition is very long and hard to work with.
2 Flow-finding algorithms have to solve many linear systems and hence

are slow:
gflow finding runs in O(n4),
Pauli flow finding runs in O(n5).

This work:
1 We propose a new algebraic interpretation of Pauli flow that simplifies

conditions for flow existence.
2 We reduce complexity of Pauli flow-finding to O(n3).

8 / 34

Issues with Pauli flow

1 Pauli flow definition is very long and hard to work with.
2 Flow-finding algorithms have to solve many linear systems and hence

are slow:
gflow finding runs in O(n4),
Pauli flow finding runs in O(n5).

This work:
1 We propose a new algebraic interpretation of Pauli flow that simplifies

conditions for flow existence.
2 We reduce complexity of Pauli flow-finding to O(n3).

8 / 34

Algebraic interpretation of Pauli flow

9 / 34

Reduced Adjacency Matrix

a e o1

o2dbi

i a b e d o1 o2
i 0 0 1 0 0 0 0 i
a 0 0 0 0 1 0 1 a
b 1 0 0 1 1 0 1 b
e 0 0 1 0 1 1 1 e
d 0 1 1 1 0 0 1 d

o1 0 0 0 1 0 0 0 o1
o2 0 1 1 1 1 0 0 o2

i a b e d o1 o2

Start with adjacency matrix

Remove output rows

Remove input columns

10 / 34

Reduced Adjacency Matrix

a e o1

o2dbi

i a b e d o1 o2
i 0 0 1 0 0 0 0 i
a 0 0 0 0 1 0 1 a
b 1 0 0 1 1 0 1 b
e 0 0 1 0 1 1 1 e
d 0 1 1 1 0 0 1 d

o1 0 0 0 1 0 0 0 o1
o2 0 1 1 1 1 0 0 o2

i a b e d o1 o2

Start with adjacency matrix

Remove output rows

Remove input columns

10 / 34

Reduced Adjacency Matrix

a e o1

o2dbi

i a b e d o1 o2
i 0 0 1 0 0 0 0 i
a 0 0 0 0 1 0 1 a
b 1 0 0 1 1 0 1 b
e 0 0 1 0 1 1 1 e
d 0 1 1 1 0 0 1 d

o1 0 0 0 1 0 0 0 o1
o2 0 1 1 1 1 0 0 o2

i a b e d o1 o2

Start with adjacency matrix

Remove output rows

Remove input columns

10 / 34

Reduced Adjacency Matrix

a e o1

o2dbi

a b e d o1 o2
i 0 1 0 0 0 0 i

a 0 0 0 1 0 1 a
b 0 0 1 1 0 1 b
e 0 1 0 1 1 1 e
d 1 1 1 0 0 1 d

a b e d o1 o2

Start with adjacency matrix

Remove output rows

Remove input columns

10 / 34

Previous algebraic interpretation – XY only case1

Let Γ = (G, I, O, λ) where λ ≡ XY .
Let A be the reduced adjacency matrix of Γ.
Γ has gflow if and only if A has a right inverse C that is a DAG
Columns of C encode the correction function.
DAG formed by C encodes the partial order.

iXY

aXY

o
A =

(a o
i 1 0 i
a 0 1 a

a o

)
C =

(i a
a 1 0 a
o 0 1 o

i a

)

Has gflow.

1Mhalla et al. (2010), arXiv:1006.2616
11 / 34

Previous algebraic interpretation – XY only case1

Let Γ = (G, I, O, λ) where λ ≡ XY .
Let A be the reduced adjacency matrix of Γ.
Γ has gflow if and only if A has a right inverse C that is a DAG
Columns of C encode the correction function.
DAG formed by C encodes the partial order.

iXY

aXY

o
A =

(a o
i 1 0 i
a 0 1 a

a o

)
C =

(i a
a 1 0 a
o 0 1 o

i a

)

Has gflow.

1Mhalla et al. (2010), arXiv:1006.2616
11 / 34

Previous algebraic interpretation – XY only case1

Let Γ = (G, I, O, λ) where λ ≡ XY .
Let A be the reduced adjacency matrix of Γ.
Γ has gflow if and only if A has a right inverse C that is a DAG
Columns of C encode the correction function.
DAG formed by C encodes the partial order.

iXY

aXY

o
A =

(a o
i 1 0 i
a 0 1 a

a o

)
C =

(i a
a 1 0 a
o 0 1 o

i a

)

Has gflow.
1Mhalla et al. (2010), arXiv:1006.2616

11 / 34

Previous algebraic interpretation – XY only case1

Let Γ = (G, I, O, λ) where λ ≡ XY .
Let A be the reduced adjacency matrix of Γ.
Γ has gflow if and only if A has a right inverse C that is a DAG
Columns of C encode the correction function.
DAG formed by C encodes the partial order.

iXY

aXY

o
A =

(a o
i 1 0 i
a 0 1 a

a o

)
C =

(i a
a 1 0 a
o 0 1 o

i a

)

Has gflow.
1Mhalla et al. (2010), arXiv:1006.2616

11 / 34

Previous algebraic interpretation – XY only case1

Let Γ = (G, I, O, λ) where λ ≡ XY .
Let A be the reduced adjacency matrix of Γ.
Γ has gflow if and only if A has a right inverse C that is a DAG
Columns of C encode the correction function.
DAG formed by C encodes the partial order.

iXY

aXY

o
A =

(a o
i 1 0 i
a 0 1 a

a o

)
C =

(i a
a 1 0 a
o 0 1 o

i a

)

Has gflow.
1Mhalla et al. (2010), arXiv:1006.2616

11 / 34

Previous algebraic interpretation – XY only case1

Let Γ = (G, I, O, λ) where λ ≡ XY .
Let A be the reduced adjacency matrix of Γ.
Γ has gflow if and only if A has a right inverse C that is a DAG
Columns of C encode the correction function.
DAG formed by C encodes the partial order.

iXY

aXY

o
A =

(a o
i 1 1 i
a 0 1 a

a o

)
C =

(i a
a 1 1 a
o 0 1 o

i a

)

No gflow.

1Mhalla et al. (2010), arXiv:1006.2616
11 / 34

Previous algebraic interpretation – XY only case1

Let Γ = (G, I, O, λ) where λ ≡ XY .
Let A be the reduced adjacency matrix of Γ.
Γ has gflow if and only if A has a right inverse C that is a DAG
Columns of C encode the correction function.
DAG formed by C encodes the partial order.

iXY

aXY

o
A =

(a o
i 1 1 i
a 0 1 a

a o

)
C =

(i a
a 1 1 a
o 0 1 o

i a

)

No gflow.

1Mhalla et al. (2010), arXiv:1006.2616
11 / 34

Previous algebraic interpretation – XY only case1

Let Γ = (G, I, O, λ) where λ ≡ XY .
Let A be the reduced adjacency matrix of Γ.
Γ has gflow if and only if A has a right inverse C that is a DAG
Columns of C encode the correction function.
DAG formed by C encodes the partial order.

iXY

aXY

o
A =

(a o
i 1 1 i
a 0 1 a

a o

)
C =

(i a
a 1 1 a
o 0 1 o

i a

)

No gflow.

1Mhalla et al. (2010), arXiv:1006.2616
11 / 34

Previous algebraic interpretation – XY only case1

Let Γ = (G, I, O, λ) where λ ≡ XY .
Let A be the reduced adjacency matrix of Γ.
Γ has gflow if and only if A has a right inverse C that is a DAG
Columns of C encode the correction function.
DAG formed by C encodes the partial order.

iXY

aXY

o
A =

(a o
i 1 1 i
a 0 1 a

a o

)
C =

(i a
a 1 1 a
o 0 1 o

i a

)

No gflow.

1Mhalla et al. (2010), arXiv:1006.2616
11 / 34

Previous algebraic interpretation – XY only case1

Let Γ = (G, I, O, λ) where λ ≡ XY .
Let A be the reduced adjacency matrix of Γ.
Γ has gflow if and only if A has a right inverse C that is a DAG
Columns of C encode the correction function.
DAG formed by C encodes the partial order.

iXY

aXY

o
A =

(a o
i 1 1 i
a 0 1 a

a o

)
C =

(i a
a 1 1 a
o 0 1 o

i a

)

No gflow.
1Mhalla et al. (2010), arXiv:1006.2616

11 / 34

Other measurements

Presented version works only for XY -measurements.

Alternative for X and Z also exists.

For all six types of measurements, we need something different.

12 / 34

Other measurements

Presented version works only for XY -measurements.

Alternative for X and Z also exists.

For all six types of measurements, we need something different.

12 / 34

Other measurements

Presented version works only for XY -measurements.

Alternative for X and Z also exists.

For all six types of measurements, we need something different.

12 / 34

Flow-demand matrix

aXZ eXY o1

o2dZbYiXY

a b e d o1 o2
i i
a a
b b
e e
d d

a b e d o1 o2

Shape Ō × Ī

Rows of XY, X: adjacency

Rows of Z, Y Z, XZ: only 1 at
intersection

Rows of Y : adjacency and 1 at
intersection

13 / 34

Flow-demand matrix

aXZ eXY o1

o2dZbYiXY

a b e d o1 o2
i 0 1 0 0 0 0 i
a a
b b
e 0 1 0 1 1 1 e
d d

a b e d o1 o2

Shape Ō × Ī

Rows of XY, X: adjacency

Rows of Z, Y Z, XZ: only 1 at
intersection

Rows of Y : adjacency and 1 at
intersection

13 / 34

Flow-demand matrix

aXZ eXY o1

o2dZbYiXY

a b e d o1 o2
i 0 1 0 0 0 0 i
a 1 0 0 0 0 0 a
b b
e 0 1 0 1 1 1 e
d 0 0 0 1 0 0 d

a b e d o1 o2

Shape Ō × Ī

Rows of XY, X: adjacency

Rows of Z, Y Z, XZ: only 1 at
intersection

Rows of Y : adjacency and 1 at
intersection

13 / 34

Flow-demand matrix

aXZ eXY o1

o2dZbYiXY

a b e d o1 o2
i 0 1 0 0 0 0 i
a 1 0 0 0 0 0 a
b 0 1 1 1 0 1 b
e 0 1 0 1 1 1 e
d 0 0 0 1 0 0 d

a b e d o1 o2

Shape Ō × Ī

Rows of XY, X: adjacency

Rows of Z, Y Z, XZ: only 1 at
intersection

Rows of Y : adjacency and 1 at
intersection

13 / 34

Correction matrix
Let c : Ō → P(Ī) be a candidate for correction function.
We encode it into Ī × Ō matrix.
Column of v in C represents c(v).

aXZ eXY o1

o2dZbYiXY

c(v)

i b, e, o1
a a, e, o1, o2
b e
e o1
d d, o2

i a b e d
a 0 1 0 0 0 a
b 1 0 0 0 0 b
e 1 1 1 0 0 e
d 0 0 0 0 1 d

o1 1 1 0 1 0 o1
o2 0 1 0 0 1 o2

i a b e d

Claim
Flow-demand matrix M times correction matrix C equals identity if and
only if . . .

14 / 34

Correction matrix
Let c : Ō → P(Ī) be a candidate for correction function.
We encode it into Ī × Ō matrix.
Column of v in C represents c(v).

aXZ eXY o1

o2dZbYiXY

c(v)

i b, e, o1
a a, e, o1, o2
b e
e o1
d d, o2

i a b e d
a 0 1 0 0 0 a
b 1 0 0 0 0 b
e 1 1 1 0 0 e
d 0 0 0 0 1 d

o1 1 1 0 1 0 o1
o2 0 1 0 0 1 o2

i a b e d

Claim
Flow-demand matrix M times correction matrix C equals identity if and
only if . . .

14 / 34

Correction matrix
Let c : Ō → P(Ī) be a candidate for correction function.
We encode it into Ī × Ō matrix.
Column of v in C represents c(v).

aXZ eXY o1

o2dZbYiXY

c(v)

i b, e, o1
a a, e, o1, o2
b e
e o1
d d, o2

i a b e d
a 0 1 0 0 0 a
b 1 0 0 0 0 b
e 1 1 1 0 0 e
d 0 0 0 0 1 d

o1 1 1 0 1 0 o1
o2 0 1 0 0 1 o2

i a b e d

Claim
Flow-demand matrix M times correction matrix C equals identity if and
only if . . .

14 / 34

Correction matrix
Let c : Ō → P(Ī) be a candidate for correction function.
We encode it into Ī × Ō matrix.
Column of v in C represents c(v).

aXZ eXY o1

o2dZbYiXY

c(v)

i b, e, o1
a a, e, o1, o2
b e
e o1
d d, o2

i a b e d
a 0 1 0 0 0 a
b 1 0 0 0 0 b
e 1 1 1 0 0 e
d 0 0 0 0 1 d

o1 1 1 0 1 0 o1
o2 0 1 0 0 1 o2

i a b e d

Claim
Flow-demand matrix M times correction matrix C equals identity if and
only if . . .

14 / 34

Correction matrix
Let c : Ō → P(Ī) be a candidate for correction function.
We encode it into Ī × Ō matrix.
Column of v in C represents c(v).

aXZ eXY o1

o2dZbYiXY

c(v)

i b, e, o1
a a, e, o1, o2
b e
e o1
d d, o2

i a b e d
a 0 1 0 0 0 a
b 1 0 0 0 0 b
e 1 1 1 0 0 e
d 0 0 0 0 1 d

o1 1 1 0 1 0 o1
o2 0 1 0 0 1 o2

i a b e d

Claim
Flow-demand matrix M times correction matrix C equals identity if and
only if . . .

14 / 34

MC = Id conditions

For all u ∈ Ō:
∀v ∈ c(u).u ̸= v ∧ λ(v) /∈ {X, Y } ⇒ u ≺ v

∀v ∈ Odd(c(u)).u ̸= v ∧ λ(v) /∈ {Y, Z} ⇒ u ≺ v

∀v ∈ Ō.¬(u ≺ v) ∧ u ̸= v ∧ λ(v) = Y ⇒ (v ∈ c(u) ⇔ v ∈ Odd(c(u)))
λ(u) = XY ⇒ u /∈ c(u) ∧ u ∈ Odd(c(u))
λ(u) = XZ ⇒ u ∈ c(u) ∧ u ∈ Odd(c(u))
λ(u) = Y Z ⇒ u ∈ c(u) ∧ u /∈ Odd(c(u))
λ(u) = X ⇒ u ∈ Odd(c(u))
λ(u) = Z ⇒ u ∈ c(u)
λ(u) = Y ⇒ (u ∈ c(u) ⊕ u ∈ Odd(c(u))), where ⊕ stands for XOR.
∀w ∈ (Ō \ {u}) ∩ c(u).λ(w) ∈ {XY, X, Y }
∀w ∈ (Ō \ {u}) ∩ Odd(c(u)).λ(w) ∈ {XZ, Y Z, Y, Z}
∀w ∈ (Ō \ {u}).λ(w) = Y ⇒ (w ∈ c(u) ⇔ w ∈ Odd(c(u)))

15 / 34

Example

aXZ eXY o1

o2dZbYiXY

λ c(v) Odd(c(v))

i XY b, e, o1 i, b, o1
a XZ a, e, o1, o2 a, d, o1
b Y e b, d, o1, o2
e XY o1 e
d Z d, o2 d, o2

a b e d o1 o2
i 0 1 0 0 0 0 i
a 1 0 0 0 0 0 a
b 0 1 1 1 0 1 b
e 0 1 0 1 1 1 e
d 0 0 0 1 0 0 d

a b e d o1 o2

i a b e d
a 0 1 0 0 0 a
b 1 0 0 0 0 b
e 1 1 1 0 0 e
d 0 0 0 0 1 d

o1 1 1 0 1 0 o1
o2 0 1 0 0 1 o2

i a b e d

=

i a b e d
i 1 0 0 0 0 i
a 0 1 0 0 0 a
b 0 0 1 0 0 b
e 0 0 0 1 0 e
d 0 0 0 0 1 d

i a b e d

16 / 34

Example

aXZ eXY o1

o2dZbYiXY

λ c(v) Odd(c(v))

i XY b, e, o1 i, b, o1
a XZ a, e, o1, o2 a, d, o1
b Y e b, d, o1, o2
e XY o1 e
d Z d, o2 d, o2

a b e d o1 o2
i 0 1 0 0 0 0 i
a 1 0 0 0 0 0 a
b 0 1 1 1 0 1 b
e 0 1 0 1 1 1 e
d 0 0 0 1 0 0 d

a b e d o1 o2

i a b e d
a 0 1 0 0 0 a
b 1 0 0 0 0 b
e 1 1 1 0 0 e
d 0 0 0 0 1 d

o1 1 1 0 1 0 o1
o2 0 1 0 0 1 o2

i a b e d

=

i a b e d
i 1 0 0 0 0 i
a 0 1 0 0 0 a
b 0 0 1 0 0 b
e 0 0 0 1 0 e
d 0 0 0 0 1 d

i a b e d

16 / 34

Example

aXZ eXY o1

o2dZbYiXY

λ c(v) Odd(c(v))

i XY b, e, o1 i, b, o1
a XZ a, e, o1, o2 a, d, o1
b Y e b, d, o1, o2
e XY o1 e
d Z d, o2 d, o2

a b e d o1 o2
i 0 1 0 0 0 0 i
a 1 0 0 0 0 0 a
b 0 1 1 1 0 1 b
e 0 1 0 1 1 1 e
d 0 0 0 1 0 0 d

a b e d o1 o2

i a b e d
a 0 1 0 0 0 a
b 1 0 0 0 0 b
e 1 1 1 0 0 e
d 0 0 0 0 1 d

o1 1 1 0 1 0 o1
o2 0 1 0 0 1 o2

i a b e d

=

i a b e d
i 1 0 0 0 0 i
a 0 1 0 0 0 a
b 0 0 1 0 0 b
e 0 0 0 1 0 e
d 0 0 0 0 1 d

i a b e d

16 / 34

Example

aXZ eXY o1

o2dZbYiXY

λ c(v) Odd(c(v))

i XY b, e, o1 i, b, o1
a XZ a, e, o1, o2 a, d, o1
b Y e b, d, o1, o2
e XY o1 e
d Z d, o2 d, o2

a b e d o1 o2
i 0 1 0 0 0 0 i
a 1 0 0 0 0 0 a
b 0 1 1 1 0 1 b
e 0 1 0 1 1 1 e
d 0 0 0 1 0 0 d

a b e d o1 o2

i a b e d
a 0 1 0 0 0 a
b 1 0 0 0 0 b
e 1 1 1 0 0 e
d 0 0 0 0 1 d

o1 1 1 0 1 0 o1
o2 0 1 0 0 1 o2

i a b e d

=

i a b e d
i 1 0 0 0 0 i
a 0 1 0 0 0 a
b 0 0 1 0 0 b
e 0 0 0 1 0 e
d 0 0 0 0 1 d

i a b e d

16 / 34

Example

aXZ eXY o1

o2dZbYiXY

λ c(v) Odd(c(v))

i XY b, e, o1 i, b, o1
a XZ a, e, o1, o2 a, d, o1
b Y e b, d, o1, o2
e XY o1 e
d Z d, o2 d, o2

a b e d o1 o2
i 0 1 0 0 0 0 i
a 1 0 0 0 0 0 a
b 0 1 1 1 0 1 b
e 0 1 0 1 1 1 e
d 0 0 0 1 0 0 d

a b e d o1 o2

i a b e d
a 0 1 0 0 0 a
b 1 0 0 0 0 b
e 1 1 1 0 0 e
d 0 0 0 0 1 d

o1 1 1 0 1 0 o1
o2 0 1 0 0 1 o2

i a b e d

=

i a b e d
i 1 0 0 0 0 i
a 0 1 0 0 0 a
b 0 0 1 0 0 b
e 0 0 0 1 0 e
d 0 0 0 0 1 d

i a b e d

16 / 34

Example

aXZ eXY o1

o2dZbYiXY

λ c(v) Odd(c(v))

i XY b, e, o1 i, b, o1
a XZ a, e, o1, o2 a, d, o1
b Y e b, d, o1, o2
e XY o1 e
d Z d, o2 d, o2

a b e d o1 o2
i 0 1 0 0 0 0 i
a 1 0 0 0 0 0 a
b 0 1 1 1 0 1 b
e 0 1 0 1 1 1 e
d 0 0 0 1 0 0 d

a b e d o1 o2

i a b e d
a 0 1 0 0 0 a
b 1 0 0 0 0 b
e 1 1 1 0 0 e
d 0 0 0 0 1 d

o1 1 1 0 1 0 o1
o2 0 1 0 0 1 o2

i a b e d

=

i a b e d
i 1 0 0 0 0 i
a 0 1 0 0 0 a
b 0 0 1 0 0 b
e 0 0 0 1 0 e
d 0 0 0 0 1 d

i a b e d

16 / 34

Order-demand matrix

aXZ eXY o1

o2dZbYiXY

a b e d o1 o2
i i
a a
b b
e e
d d

a b e d o1 o2

Shape Ō × Ī

Rows of X, Y, Z: identically 0

Rows of XY : only 1 at intersection

Rows of Y Z: adjacency

Rows of XZ: adjacency and 1 at
intersection

17 / 34

Order-demand matrix

aXZ eXY o1

o2dZbYiXY

a b e d o1 o2
i i
a a
b 0 0 0 0 0 0 b
e e
d 0 0 0 0 0 0 d

a b e d o1 o2

Shape Ō × Ī

Rows of X, Y, Z: identically 0

Rows of XY : only 1 at intersection

Rows of Y Z: adjacency

Rows of XZ: adjacency and 1 at
intersection

17 / 34

Order-demand matrix

aXZ eXY o1

o2dZbYiXY

a b e d o1 o2
i 0 0 0 0 0 0 i
a a
b 0 0 0 0 0 0 b
e 0 0 1 0 0 0 e
d 0 0 0 0 0 0 d

a b e d o1 o2

Shape Ō × Ī

Rows of X, Y, Z: identically 0

Rows of XY : only 1 at intersection

Rows of Y Z: adjacency

Rows of XZ: adjacency and 1 at
intersection

17 / 34

Order-demand matrix

aXZ eXY o1

o2dZbYiXY

a b e d o1 o2
i 0 0 0 0 0 0 i
a a
b 0 0 0 0 0 0 b
e 0 0 1 0 0 0 e
d 0 0 0 0 0 0 d

a b e d o1 o2

Shape Ō × Ī

Rows of X, Y, Z: identically 0

Rows of XY : only 1 at intersection

Rows of Y Z: adjacency

Rows of XZ: adjacency and 1 at
intersection

17 / 34

Order-demand matrix

aXZ eXY o1

o2dZbYiXY

a b e d o1 o2
i 0 0 0 0 0 0 i
a 1 0 0 1 0 1 a
b 0 0 0 0 0 0 b
e 0 0 1 0 0 0 e
d 0 0 0 0 0 0 d

a b e d o1 o2

Shape Ō × Ī

Rows of X, Y, Z: identically 0

Rows of XY : only 1 at intersection

Rows of Y Z: adjacency

Rows of XZ: adjacency and 1 at
intersection

17 / 34

Full picture

Claim
Flow-demand matrix M times correction matrix C equals identity if and
only if . . .

Claim
Order-demand matrix N times correction matrix C forms a DAG if and
only if . . .

Theorem
Given a labelled open graph Γ, let M be its flow-demand matrix and N its
order-demand matrix. Then, Γ has Pauli flow if and only if there exists a
correction matrix C such that MC = Id and NC forms a DAG.

18 / 34

Full picture

Claim
Flow-demand matrix M times correction matrix C equals identity if and
only if . . .

Claim
Order-demand matrix N times correction matrix C forms a DAG if and
only if . . .

Theorem
Given a labelled open graph Γ, let M be its flow-demand matrix and N its
order-demand matrix. Then, Γ has Pauli flow if and only if there exists a
correction matrix C such that MC = Id and NC forms a DAG.

18 / 34

Full picture

Claim
Flow-demand matrix M times correction matrix C equals identity if and
only if . . .

Claim
Order-demand matrix N times correction matrix C forms a DAG if and
only if . . .

Theorem
Given a labelled open graph Γ, let M be its flow-demand matrix and N its
order-demand matrix. Then, Γ has Pauli flow if and only if there exists a
correction matrix C such that MC = Id and NC forms a DAG.

18 / 34

Full picture

Claim
Flow-demand matrix M times correction matrix C equals identity if and
only if . . .

Claim
Order-demand matrix N times correction matrix C forms a DAG if and
only if . . .

Theorem
Given a labelled open graph Γ, let M be its flow-demand matrix and N its
order-demand matrix. Then, Γ has Pauli flow if and only if there exists a
correction matrix C such that MC = Id and NC forms a DAG.

18 / 34

Full example

aXZ eXY o1

o2dZbYiXY

M a b e d o1 o2
i 0 1 0 0 0 0 i
a 1 0 0 0 0 0 a
b 0 1 1 1 0 1 b
e 0 1 0 1 1 1 e
d 0 0 0 1 0 0 d

a b e d o1 o2

N a b e d o1 o2
i 0 0 0 0 0 0 i
a 1 0 0 1 0 1 a
b 0 0 0 0 0 0 b
e 0 0 1 0 0 0 e
d 0 0 0 0 0 0 d

a b e d o1 o2

C i a b e d
a 0 1 0 0 0 a
b 1 0 0 0 0 b
e 1 1 1 0 0 e
d 0 0 0 0 1 d

o1 1 1 0 1 0 o1
o2 0 1 0 0 1 o2

i a b e d

NC i a b e d
i 0 0 0 0 0 i
a 0 0 0 0 0 a
b 0 0 0 0 0 b
e 1 1 1 0 0 e
d 0 0 0 0 0 d

i a b e d

19 / 34

Using algebraic interpretation in proofs

20 / 34

Previous flow-reversibility – XY only case1

aXY eXY o1

o2dXYbXYiXY
2

iXY
1

↓ switch I and O ↓

aXY eXY oXY
1

oXY
2dXYbXYi2

i1

i1 i2 a b e d
a 1 1 0 0 0 0 a
b 0 1 0 0 0 0 b
e 1 0 1 1 0 1 c
d 0 0 1 0 0 0 d

o1 1 1 0 0 1 1 o1
o2 1 0 0 0 0 1 o2

i1 i2 a b e d

↓ transpose ↓

a b e d o1 o2
i1 1 0 1 0 1 1 i1
i2 1 1 0 0 1 0 i2
a 0 0 1 1 0 0 a
b 0 0 1 0 0 0 b
e 0 0 0 0 1 0 c
d 0 0 1 0 1 1 d

a b e d o1 o2

1Mhalla et al. (2010), arXiv:1006.2616
21 / 34

Previous flow-reversibility – XY only case1

aXY eXY o1

o2dXYbXYiXY
2

iXY
1

↓ switch I and O ↓

aXY eXY oXY
1

oXY
2dXYbXYi2

i1

i1 i2 a b e d
a 1 1 0 0 0 0 a
b 0 1 0 0 0 0 b
e 1 0 1 1 0 1 c
d 0 0 1 0 0 0 d

o1 1 1 0 0 1 1 o1
o2 1 0 0 0 0 1 o2

i1 i2 a b e d

↓ transpose ↓

a b e d o1 o2
i1 1 0 1 0 1 1 i1
i2 1 1 0 0 1 0 i2
a 0 0 1 1 0 0 a
b 0 0 1 0 0 0 b
e 0 0 0 0 1 0 c
d 0 0 1 0 1 1 d

a b e d o1 o2

1Mhalla et al. (2010), arXiv:1006.2616
21 / 34

Previous flow-reversibility – XY only case1

aXY eXY o1

o2dXYbXYiXY
2

iXY
1

↓ switch I and O ↓

aXY eXY oXY
1

oXY
2dXYbXYi2

i1

i1 i2 a b e d
a 1 1 0 0 0 0 a
b 0 1 0 0 0 0 b
e 1 0 1 1 0 1 c
d 0 0 1 0 0 0 d

o1 1 1 0 0 1 1 o1
o2 1 0 0 0 0 1 o2

i1 i2 a b e d

↓ transpose ↓

a b e d o1 o2
i1 1 0 1 0 1 1 i1
i2 1 1 0 0 1 0 i2
a 0 0 1 1 0 0 a
b 0 0 1 0 0 0 b
e 0 0 0 0 1 0 c
d 0 0 1 0 1 1 d

a b e d o1 o2

1Mhalla et al. (2010), arXiv:1006.2616
21 / 34

Previous flow-reversibility – XY only case1

aXY eXY o1

o2dXYbXYiXY
2

iXY
1

↓ switch I and O ↓

aXY eXY oXY
1

oXY
2dXYbXYi2

i1

i1 i2 a b e d
a 1 1 0 0 0 0 a
b 0 1 0 0 0 0 b
e 1 0 1 1 0 1 c
d 0 0 1 0 0 0 d

o1 1 1 0 0 1 1 o1
o2 1 0 0 0 0 1 o2

i1 i2 a b e d

↓ transpose ↓

a b e d o1 o2
i1 1 0 1 0 1 1 i1
i2 1 1 0 0 1 0 i2
a 0 0 1 1 0 0 a
b 0 0 1 0 0 0 b
e 0 0 0 0 1 0 c
d 0 0 1 0 1 1 d

a b e d o1 o2

1Mhalla et al. (2010), arXiv:1006.2616
21 / 34

Flow-reversibility – any measurement labels

aXZ eXY o1

o2

dZ

bYiXY
2

iXY
1

↓ switch I and O ↓

aXZ eXY oXY
1

oXY
2

dZ

bYi2

i1

i1 i2 a b e d
a 0 0 1 0 0 0 a
b 0 1 0 0 0 0 b
e 1 1 1 1 0 1 e
d 0 0 0 0 0 1 d

o1 1 1 1 0 1 1 o1
o2 1 0 1 0 0 0 o2

i1 i2 a b e d

↓

not just transpose

↓

a b e d o1 o2
i1 1 0 1 0 1 1 i1
i2 0 1 1 0 1 0 i2
a 1 0 0 0 0 0 a
b 0 0 1 1 0 0 b
e 0 0 0 0 1 0 c
d 0 0 0 1 0 0 d

a b e d o1 o2

22 / 34

Flow-reversibility – any measurement labels

aXZ eXY o1

o2

dZ

bYiXY
2

iXY
1

↓ switch I and O ↓

aXZ eXY oXY
1

oXY
2

dZ

bYi2

i1

i1 i2 a b e d
a 0 0 1 0 0 0 a
b 0 1 0 0 0 0 b
e 1 1 1 1 0 1 e
d 0 0 0 0 0 1 d

o1 1 1 1 0 1 1 o1
o2 1 0 1 0 0 0 o2

i1 i2 a b e d

↓

not just transpose

↓

a b e d o1 o2
i1 1 0 1 0 1 1 i1
i2 0 1 1 0 1 0 i2
a 1 0 0 0 0 0 a
b 0 0 1 1 0 0 b
e 0 0 0 0 1 0 c
d 0 0 0 1 0 0 d

a b e d o1 o2

22 / 34

Flow-reversibility – any measurement labels

aXZ eXY o1

o2

dZ

bYiXY
2

iXY
1

↓ switch I and O ↓

aXZ eXY oXY
1

oXY
2

dZ

bYi2

i1

i1 i2 a b e d
a 0 0 1 0 0 0 a
b 0 1 0 0 0 0 b
e 1 1 1 1 0 1 e
d 0 0 0 0 0 1 d

o1 1 1 1 0 1 1 o1
o2 1 0 1 0 0 0 o2

i1 i2 a b e d

↓

not just transpose

↓

a b e d o1 o2
i1 1 0 1 0 1 1 i1
i2 0 1 1 0 1 0 i2
a 1 0 0 0 0 0 a
b 0 0 1 1 0 0 b
e 0 0 0 0 1 0 c
d 0 0 0 1 0 0 d

a b e d o1 o2

22 / 34

Flow-reversibility – any measurement labels

aXZ eXY o1

o2

dZ

bYiXY
2

iXY
1

↓ switch I and O ↓

aXZ eXY oXY
1

oXY
2

dZ

bYi2

i1

i1 i2 a b e d
a 0 0 1 0 0 0 a
b 0 1 0 0 0 0 b
e 1 1 1 1 0 1 e
d 0 0 0 0 0 1 d

o1 1 1 1 0 1 1 o1
o2 1 0 1 0 0 0 o2

i1 i2 a b e d

↓

not just transpose

↓

a b e d o1 o2
i1 1 0 1 0 1 1 i1
i2 0 1 1 0 1 0 i2
a 1 0 0 0 0 0 a
b 0 0 1 1 0 0 b
e 0 0 0 0 1 0 c
d 0 0 0 1 0 0 d

a b e d o1 o2

22 / 34

Flow-reversibility – any measurement labels

aXZ eXY o1

o2

dZ

bYiXY
2

iXY
1

↓ switch I and O ↓

aXZ eXY oXY
1

oXY
2

dZ

bYi2

i1

i1 i2 a b e d
a 0 0 1 0 0 0 a
b 0 1 0 0 0 0 b
e 1 1 1 1 0 1 e
d 0 0 0 0 0 1 d

o1 1 1 1 0 1 1 o1
o2 1 0 1 0 0 0 o2

i1 i2 a b e d

↓ not just transpose ↓

a b e d o1 o2
i1 1 0 1 0 1 1 i1
i2 0 1 1 0 1 0 i2
a 1 0 0 0 0 0 a
b 0 0 1 1 0 0 b
e 0 0 0 0 1 0 c
d 0 0 0 1 0 0 d

a b e d o1 o2

22 / 34

Focused sets

Some stabilizers have trivial net effect on correction.
Such stabilizers are determined by focused sets.
Focused sets are parametrized by kernel of flow-demand matrix.

aXZ eXY o1

o2dZbYiXY

ker

a b e d o1 o2
i 0 1 0 0 0 0 i
a 1 0 0 0 0 0 a
b 0 1 1 1 0 1 b
e 0 1 0 1 1 1 e
d 0 0 0 1 0 0 d

a b e d o1 o2

= Span

a 0 a
b 0 b
e 1 e
d 0 d

o1 1 o1
o2 1 o2

23 / 34

Focused sets

Some stabilizers have trivial net effect on correction.
Such stabilizers are determined by focused sets.
Focused sets are parametrized by kernel of flow-demand matrix.

aXZ eXY o1

o2dZbYiXY

ker

a b e d o1 o2
i 0 1 0 0 0 0 i
a 1 0 0 0 0 0 a
b 0 1 1 1 0 1 b
e 0 1 0 1 1 1 e
d 0 0 0 1 0 0 d

a b e d o1 o2

= Span

a 0 a
b 0 b
e 1 e
d 0 d

o1 1 o1
o2 1 o2

23 / 34

Focused sets

Some stabilizers have trivial net effect on correction.
Such stabilizers are determined by focused sets.
Focused sets are parametrized by kernel of flow-demand matrix.

aXZ eXY o1

o2dZbYiXY

ker

a b e d o1 o2
i 0 1 0 0 0 0 i
a 1 0 0 0 0 0 a
b 0 1 1 1 0 1 b
e 0 1 0 1 1 1 e
d 0 0 0 1 0 0 d

a b e d o1 o2

= Span

a 0 a
b 0 b
e 1 e
d 0 d

o1 1 o1
o2 1 o2

23 / 34

Focused sets

Some stabilizers have trivial net effect on correction.
Such stabilizers are determined by focused sets.
Focused sets are parametrized by kernel of flow-demand matrix.

aXZ eXY o1

o2dZbYiXY

ker

a b e d o1 o2
i 0 1 0 0 0 0 i
a 1 0 0 0 0 0 a
b 0 1 1 1 0 1 b
e 0 1 0 1 1 1 e
d 0 0 0 1 0 0 d

a b e d o1 o2

= Span

a 0 a
b 0 b
e 1 e
d 0 d

o1 1 o1
o2 1 o2

23 / 34

Focused sets

Some stabilizers have trivial net effect on correction.
Such stabilizers are determined by focused sets.
Focused sets are parametrized by kernel of flow-demand matrix.

aXZ eXY o1

o2dZbYiXY

ker

a b e d o1 o2
i 0 1 0 0 0 0 i
a 1 0 0 0 0 0 a
b 0 1 1 1 0 1 b
e 0 1 0 1 1 1 e
d 0 0 0 1 0 0 d

a b e d o1 o2

= Span

a 0 a
b 0 b
e 1 e
d 0 d

o1 1 o1
o2 1 o2

23 / 34

Focused sets

Some stabilizers have trivial net effect on correction.
Such stabilizers are determined by focused sets.
Focused sets are parametrized by kernel of flow-demand matrix.

aXZ eXY o1

o2dZbYiXY
ker

a b e d o1 o2
i 0 1 0 0 0 0 i
a 1 0 0 0 0 0 a
b 0 1 1 1 0 1 b
e 0 1 0 1 1 1 e
d 0 0 0 1 0 0 d

a b e d o1 o2

 = Span

a 0 a
b 0 b
e 1 e
d 0 d

o1 1 o1
o2 1 o2

23 / 34

Finding flow

24 / 34

Flow-finding problem

Input: a labelled open graph Γ = (G, I, O, λ).
Output: (c, ≺) forming Pauli flow on Γ or a message that no such
flow exists.

The problem is already known to be in P,

The existing algorithm complexity is O(n5).

25 / 34

Flow-finding problem

Input: a labelled open graph Γ = (G, I, O, λ).
Output: (c, ≺) forming Pauli flow on Γ or a message that no such
flow exists.

The problem is already known to be in P,

The existing algorithm complexity is O(n5).

25 / 34

Flow-finding problem

Input: a labelled open graph Γ = (G, I, O, λ).
Output: (c, ≺) forming Pauli flow on Γ or a message that no such
flow exists.

The problem is already known to be in P,

The existing algorithm complexity is O(n5).

25 / 34

Algebraic interpretation

Theorem
Given a labelled open graph Γ, let M be its flow-demand matrix and N its
order-demand matrix. Then, Γ has Pauli flow if and only if there exists a
correction matrix C such that MC = Id and NC forms a DAG.

Flow-demand matrix M has shape Ō × Ī.

When |I| = |O| then M is square.

Hence if C such that MC = Id exists, then C is unique.

26 / 34

Algebraic interpretation

Theorem
Given a labelled open graph Γ, let M be its flow-demand matrix and N its
order-demand matrix. Then, Γ has Pauli flow if and only if there exists a
correction matrix C such that MC = Id and NC forms a DAG.

Flow-demand matrix M has shape Ō × Ī.

When |I| = |O| then M is square.

Hence if C such that MC = Id exists, then C is unique.

26 / 34

Algebraic interpretation

Theorem
Given a labelled open graph Γ, let M be its flow-demand matrix and N its
order-demand matrix. Then, Γ has Pauli flow if and only if there exists a
correction matrix C such that MC = Id and NC forms a DAG.

Flow-demand matrix M has shape Ō × Ī.

When |I| = |O| then M is square.

Hence if C such that MC = Id exists, then C is unique.

26 / 34

Algebraic interpretation

Theorem
Given a labelled open graph Γ, let M be its flow-demand matrix and N its
order-demand matrix. Then, Γ has Pauli flow if and only if there exists a
correction matrix C such that MC = Id and NC forms a DAG.

Flow-demand matrix M has shape Ō × Ī.

When |I| = |O| then M is square.

Hence if C such that MC = Id exists, then C is unique.

26 / 34

Case |I| = |O|

Given a labelled open graph:
1 Compute the flow-demand matrix M and the order-demand matrix N .
2 Compute a unique inverse C of M .

Output “No flow” if C does not exist.
3 Compute NC.
4 Check if NC is a DAG.

Output “No flow” if NC is not a DAG.
5 Output correction matrix C and matrix of the induced order NC.

Time complexity is dominated by matrix inverse and matrix multiplication:
näıve approach O(n3),
Strassen algorithm ∼ O(n2.8).

27 / 34

Case |I| = |O|

Given a labelled open graph:
1 Compute the flow-demand matrix M and the order-demand matrix N .
2 Compute a unique inverse C of M .

Output “No flow” if C does not exist.
3 Compute NC.
4 Check if NC is a DAG.

Output “No flow” if NC is not a DAG.
5 Output correction matrix C and matrix of the induced order NC.

Time complexity is dominated by matrix inverse and matrix multiplication:
näıve approach O(n3),
Strassen algorithm ∼ O(n2.8).

27 / 34

Case |I| = |O|

Given a labelled open graph:
1 Compute the flow-demand matrix M and the order-demand matrix N .
2 Compute a unique inverse C of M .

Output “No flow” if C does not exist.
3 Compute NC.
4 Check if NC is a DAG.

Output “No flow” if NC is not a DAG.
5 Output correction matrix C and matrix of the induced order NC.

Time complexity is dominated by matrix inverse and matrix multiplication:
näıve approach O(n3),
Strassen algorithm ∼ O(n2.8).

27 / 34

Case |I| = |O|

Given a labelled open graph:
1 Compute the flow-demand matrix M and the order-demand matrix N .
2 Compute a unique inverse C of M .

Output “No flow” if C does not exist.
3 Compute NC.
4 Check if NC is a DAG.

Output “No flow” if NC is not a DAG.
5 Output correction matrix C and matrix of the induced order NC.

Time complexity is dominated by matrix inverse and matrix multiplication:
näıve approach O(n3),
Strassen algorithm ∼ O(n2.8).

27 / 34

Case |I| = |O|

Given a labelled open graph:
1 Compute the flow-demand matrix M and the order-demand matrix N .
2 Compute a unique inverse C of M .

Output “No flow” if C does not exist.
3 Compute NC.
4 Check if NC is a DAG.

Output “No flow” if NC is not a DAG.
5 Output correction matrix C and matrix of the induced order NC.

Time complexity is dominated by matrix inverse and matrix multiplication:
näıve approach O(n3),
Strassen algorithm ∼ O(n2.8).

27 / 34

Case |I| = |O|

Given a labelled open graph:
1 Compute the flow-demand matrix M and the order-demand matrix N .
2 Compute a unique inverse C of M .

Output “No flow” if C does not exist.
3 Compute NC.
4 Check if NC is a DAG.

Output “No flow” if NC is not a DAG.
5 Output correction matrix C and matrix of the induced order NC.

Time complexity is dominated by matrix inverse and matrix multiplication:
näıve approach O(n3),
Strassen algorithm ∼ O(n2.8).

27 / 34

Case |I| = |O|

Given a labelled open graph:
1 Compute the flow-demand matrix M and the order-demand matrix N .
2 Compute a unique inverse C of M .

Output “No flow” if C does not exist.
3 Compute NC.
4 Check if NC is a DAG.

Output “No flow” if NC is not a DAG.
5 Output correction matrix C and matrix of the induced order NC.

Time complexity is dominated by matrix inverse and matrix multiplication:
näıve approach O(n3),
Strassen algorithm ∼ O(n2.8).

27 / 34

Case |I| = |O|

Given a labelled open graph:
1 Compute the flow-demand matrix M and the order-demand matrix N .
2 Compute a unique inverse C of M .

Output “No flow” if C does not exist.
3 Compute NC.
4 Check if NC is a DAG.

Output “No flow” if NC is not a DAG.
5 Output correction matrix C and matrix of the induced order NC.

Time complexity is dominated by matrix inverse and matrix multiplication:
näıve approach O(n3),
Strassen algorithm ∼ O(n2.8).

27 / 34

Lower bound

Let M be any m × m matrix over F2.

Let I = {i1, . . . , im}, O = {o1, . . . , om}, and V = I ∪ O.

Let E correspond to M , i.e. iuov ∈ E if and only if Mu,v = 1.

Let λ(v) = X for v ∈ I = Ō.

Then the labelled open graph ((V, E), I, O, λ) has flow-demand
matrix M .

Hence it has Pauli flow if and only if M is invertible.

28 / 34

Lower bound

Let M be any m × m matrix over F2.

Let I = {i1, . . . , im}, O = {o1, . . . , om}, and V = I ∪ O.

Let E correspond to M , i.e. iuov ∈ E if and only if Mu,v = 1.

Let λ(v) = X for v ∈ I = Ō.

Then the labelled open graph ((V, E), I, O, λ) has flow-demand
matrix M .

Hence it has Pauli flow if and only if M is invertible.

28 / 34

Lower bound

Let M be any m × m matrix over F2.

Let I = {i1, . . . , im}, O = {o1, . . . , om}, and V = I ∪ O.

Let E correspond to M , i.e. iuov ∈ E if and only if Mu,v = 1.

Let λ(v) = X for v ∈ I = Ō.

Then the labelled open graph ((V, E), I, O, λ) has flow-demand
matrix M .

Hence it has Pauli flow if and only if M is invertible.

28 / 34

Lower bound

Let M be any m × m matrix over F2.

Let I = {i1, . . . , im}, O = {o1, . . . , om}, and V = I ∪ O.

Let E correspond to M , i.e. iuov ∈ E if and only if Mu,v = 1.

Let λ(v) = X for v ∈ I = Ō.

Then the labelled open graph ((V, E), I, O, λ) has flow-demand
matrix M .

Hence it has Pauli flow if and only if M is invertible.

28 / 34

Lower bound

Let M be any m × m matrix over F2.

Let I = {i1, . . . , im}, O = {o1, . . . , om}, and V = I ∪ O.

Let E correspond to M , i.e. iuov ∈ E if and only if Mu,v = 1.

Let λ(v) = X for v ∈ I = Ō.

Then the labelled open graph ((V, E), I, O, λ) has flow-demand
matrix M .

Hence it has Pauli flow if and only if M is invertible.

28 / 34

Lower bound

Let M be any m × m matrix over F2.

Let I = {i1, . . . , im}, O = {o1, . . . , om}, and V = I ∪ O.

Let E correspond to M , i.e. iuov ∈ E if and only if Mu,v = 1.

Let λ(v) = X for v ∈ I = Ō.

Then the labelled open graph ((V, E), I, O, λ) has flow-demand
matrix M .

Hence it has Pauli flow if and only if M is invertible.

28 / 34

General case

We construct flow-demand matrix M and order-demand matrix N .

Problem: find C such that MC = Id and NC is a DAG.

When |I| < |O|, there can be 2(n−|O|)(|O|−|I|) many matrices C such
that MC = Id.

We cannot check NC for all such C.

29 / 34

General case

We construct flow-demand matrix M and order-demand matrix N .

Problem: find C such that MC = Id and NC is a DAG.

When |I| < |O|, there can be 2(n−|O|)(|O|−|I|) many matrices C such
that MC = Id.

We cannot check NC for all such C.

29 / 34

General case

We construct flow-demand matrix M and order-demand matrix N .

Problem: find C such that MC = Id and NC is a DAG.

When |I| < |O|, there can be 2(n−|O|)(|O|−|I|) many matrices C such
that MC = Id.

We cannot check NC for all such C.

29 / 34

General case

We construct flow-demand matrix M and order-demand matrix N .

Problem: find C such that MC = Id and NC is a DAG.

When |I| < |O|, there can be 2(n−|O|)(|O|−|I|) many matrices C such
that MC = Id.

We cannot check NC for all such C.

29 / 34

General case – cont.
We modify a layer-by-layer approach used in previous flow-finding
algorithms:

Solve some linear system to find and correct vertices last in the order.

Next, construct another linear system to find and correct vertices
second to last in the order.

And so on. . .

Our improvement: instead of constructing a new system for each layer, we
adjust the previous system, skipping Gaussian elimination.

aXZ eXY o1

o2dZbYiXY

Last layer: e, d
Second to last layer: i, a, b

30 / 34

General case – cont.
We modify a layer-by-layer approach used in previous flow-finding
algorithms:

Solve some linear system to find and correct vertices last in the order.

Next, construct another linear system to find and correct vertices
second to last in the order.

And so on. . .

Our improvement: instead of constructing a new system for each layer, we
adjust the previous system, skipping Gaussian elimination.

aXZ eXY o1

o2dZbYiXY

Last layer: e, d

Second to last layer: i, a, b

30 / 34

General case – cont.
We modify a layer-by-layer approach used in previous flow-finding
algorithms:

Solve some linear system to find and correct vertices last in the order.

Next, construct another linear system to find and correct vertices
second to last in the order.

And so on. . .

Our improvement: instead of constructing a new system for each layer, we
adjust the previous system, skipping Gaussian elimination.

aXZ eXY o1

o2dZbYiXY

Last layer: e, d
Second to last layer: i, a, b

30 / 34

General case – cont.
We modify a layer-by-layer approach used in previous flow-finding
algorithms:

Solve some linear system to find and correct vertices last in the order.

Next, construct another linear system to find and correct vertices
second to last in the order.

And so on. . .

Our improvement: instead of constructing a new system for each layer, we
adjust the previous system, skipping Gaussian elimination.

aXZ eXY o1

o2dZbYiXY

Last layer: e, d
Second to last layer: i, a, b

30 / 34

General case – cont.
We modify a layer-by-layer approach used in previous flow-finding
algorithms:

Solve some linear system to find and correct vertices last in the order.

Next, construct another linear system to find and correct vertices
second to last in the order.

And so on. . .
Our improvement: instead of constructing a new system for each layer, we
adjust the previous system, skipping Gaussian elimination.

aXZ eXY o1

o2dZbYiXY

Last layer: e, d
Second to last layer: i, a, b

30 / 34

Conclusion

31 / 34

Summary

The original definition of Pauli flow is hard to work with.

For a given labelled open graph Γ, we defined flow-demand matrix M
and order-demand matrix N .

We showed, that Γ has Pauli flow if and only if MC = Id and NC is
a DAG for some matrix C.

We used this algebraic interpretation to lower the complexity bound
for the flow-finding problem.

32 / 34

Summary

The original definition of Pauli flow is hard to work with.

For a given labelled open graph Γ, we defined flow-demand matrix M
and order-demand matrix N .

We showed, that Γ has Pauli flow if and only if MC = Id and NC is
a DAG for some matrix C.

We used this algebraic interpretation to lower the complexity bound
for the flow-finding problem.

32 / 34

Summary

The original definition of Pauli flow is hard to work with.

For a given labelled open graph Γ, we defined flow-demand matrix M
and order-demand matrix N .

We showed, that Γ has Pauli flow if and only if MC = Id and NC is
a DAG for some matrix C.

We used this algebraic interpretation to lower the complexity bound
for the flow-finding problem.

32 / 34

Summary

The original definition of Pauli flow is hard to work with.

For a given labelled open graph Γ, we defined flow-demand matrix M
and order-demand matrix N .

We showed, that Γ has Pauli flow if and only if MC = Id and NC is
a DAG for some matrix C.

We used this algebraic interpretation to lower the complexity bound
for the flow-finding problem.

32 / 34

Further work

Is there an algebraic interpretation for other notions of MBQC?

Can we find new flow-preserving rules?

Given an unlabelled open graph, can we find interesting measurement
labels resulting in Pauli flow?

Can we speed up circuit extraction?

33 / 34

Further work

Is there an algebraic interpretation for other notions of MBQC?

Can we find new flow-preserving rules?

Given an unlabelled open graph, can we find interesting measurement
labels resulting in Pauli flow?

Can we speed up circuit extraction?

33 / 34

Further work

Is there an algebraic interpretation for other notions of MBQC?

Can we find new flow-preserving rules?

Given an unlabelled open graph, can we find interesting measurement
labels resulting in Pauli flow?

Can we speed up circuit extraction?

33 / 34

Further work

Is there an algebraic interpretation for other notions of MBQC?

Can we find new flow-preserving rules?

Given an unlabelled open graph, can we find interesting measurement
labels resulting in Pauli flow?

Can we speed up circuit extraction?

33 / 34

arXiv:2410.23439

Thank you!

34 / 34

https://arxiv.org/abs/2410.23439
https://arxiv.org/abs/2410.23439

