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Two models of quantum computation

quantum circuit model

T † T

T

[Deutsch 1989]

▶ initialise state |0 . . . 0⟩
▶ computation driven by unitary

gates

▶ read out data using
computational basis
measurements

one-way model (MBQC)

X s2
3 MXY ,β

2 Z s1
3 X s1

2 MXY ,α
1 E23E12N3N2

[Raussendorf & Briegel 2001]

▶ initialise entangled resource
state (can be independent of
computation)

▶ computation driven by
successive adaptive single-qubit
measurements

▶ if goal is state preparation, need
Pauli gates as correction at end
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Motivation

Translation between models

▶ circuit to MBQC is straightforward

▶ MBQC to circuit with ancillas is also straightforward

Question 1: How to translate any (suitably deterministic) MBQC into an
ancilla-free circuit?

Rewriting MBQCs

▶ optimisation (of circuits and of MBQC themselves), e.g. computational depth,
number of operations,...

▶ verification

▶ blind quantum computation

Question 2: What rewrite rules would be useful?
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Resource states for the one-way model

The resource states are graph states defined by simple graphs G = (V ,E ):

▶ For each vertex in V , a qubit prepared in state |+⟩.

▶ For each edge in E , a CZ gate.

1 2

4 3
⇝

CZ12CZ23CZ24CZ34

|++++⟩

All graph states are stabiliser states: eigenstates of certain tensor products of
Pauli matrices.
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Measurements and corrections

Measurements are constrained to three planes of the Bloch sphere spanned by two
of the Pauli operators: XY , XZ and YZ .

▶ Each measurement has an associated angle α.

▶ Pauli measurements may be treated separately.

Desired and undesired measurement outcomes are related by Pauli matrices, e.g.

|+XY ,α⟩ =
1√
2
(|0⟩+ e iα |1⟩) |−XY ,α⟩ =

1√
2
(|0⟩ − e iα |1⟩) = Z |+XY ,α⟩

Correction strategy: use stabiliser property of graph state to turn undesired
outcome into desired one by applying Paulis to other qubits.

▶ Must have trivial effects on all qubits that are already measured.
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Determinism and flow properties

Theorem [Browne et al. 2007, Mhalla et al. 2022]

An MBQC has a robustly deterministic implementation if and only if the
underlying labelled open graph has flow.

•

•

◦
XY XY

X Y
XY

XY

X

inputs outputs

A flow consists of

▶ a partial order over the
vertices,

▶ and a correction function,

satisfying certain compatibility
conditions.

Theorem [de Beaudrap 2008; Mhalla & Perdrix 2008; B. et al. 2021; Simmons 2021]

Flows can be found in polynomial time.
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The one-way model in ZX-notation

An MBQC is represented in the graphical ZX-notation as follows:

▶ green vertices with one outgoing wire each, connected by blue dashed edges,
for the graph state,

▶ additional wires for the inputs, and

▶ additional vertices connected to some of the outgoing wires for the
measurements: XY ⇝ α XZ ⇝ απ

2 YZ ⇝ α

π
4

−π
2

5π
40

0 0

0
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ZX generators and circuits in ZX-notation

α
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.
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...

. . .
...
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2
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1 1
1 −1

)

..
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.α α

..
. β

..
.

Gate H
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ZX equivalent

π
2 α
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Sound and complete ZX-calculus rewrite rules (up to scalars)

β..
.

..
.

α ..
.

..
.

=..
.

..
.

..
.α+β

−α=
π

π

π α

..
.

..
.

π

..
.α =

..
.

..
. =

..
. =

=

=

..
.α α

..
.

π
2

π
2

π
2= ‘Only connectivity matters.’

This set is complete for the stabiliser ZX-calculus [B. 2014], can find overview over
different complete rule sets in [van de Wetering 2021].
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Ancilla-free circuit extraction: overview

π
4

π
4

5π
4

D -π
4

π
4

π

3π
4

circuitZX-diagram with extended gflow

[Duncan et al. 2020; B., Miller-Bakewell, Felice, Lobski, van de Wetering 2021; Staudacher 2023]



Simplify connections between frontier and unextracted layer

D

v w

=

extractedunextracted

D

v w
extractedunextracted

= D

v w
extractedunextracted

= D

v w
extractedunextracted

u



Extract a maximal vertex

..
.

..
.

α

v

w

..
.

..
.

..
.

α
v

..
.

=

extractedunextracted extractedunextracted



If needed, change measurement type

π
4

5π
4

D -π
4

π
4

3π
4

extractedunextracted

π
4

5π
4

D -π
4

π
4

3π
4
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Flow-preserving rewrite rules for the stabiliser ZX-calculus

Local complementation

...

...

...

...

=
...

...

π
2

π
2

π
2

π
2

...

...

...

...

...
...

−π
2

Z -deletion/insertion

...

...

...

...

aπ

=
...

...

aπ

aπ aπ

aπ
...

...

...

...

...
...

Theorem [McElvanney & B. 2023]

Suppose D and D ′ are two stabiliser ZX-diagrams with flow that both represent
the same linear map. Then one can be rewritten into the other using local
complementation, Z -insertion, and Z -deletion.
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quantum servers [Cao 2023]

Computational complexity of reasoning with ZX-calculus

▶ circuit extraction from arbitrary ZX diagram is #P-hard [de Beaudrap et al. 2022]

▶ circuit extraction from ZX diagrams with flow is in P
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It is useful to:
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having flow)
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▶ extra conditions for some rules for different types of flow

▶ going beyond the current framework of flow
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