
The circuit model, the one-way model, and the

ZX-calculus

Miriam Backens (they/them)
MOCQUA, Inria & Loria, Nancy

miriam.backens@inria.fr

Graphix workshop, 18 November 2024

Two models of quantum computation

quantum circuit model

T † T

T

[Deutsch 1989]

▶ initialise state |0 . . . 0⟩
▶ computation driven by unitary

gates

▶ read out data using
computational basis
measurements

one-way model (MBQC)

X s2
3 MXY ,β

2 Z s1
3 X s1

2 MXY ,α
1 E23E12N3N2

[Raussendorf & Briegel 2001]

▶ initialise entangled resource
state (can be independent of
computation)

▶ computation driven by
successive adaptive single-qubit
measurements

▶ if goal is state preparation, need
Pauli gates as correction at end

Two models of quantum computation

quantum circuit model

T † T

T

[Deutsch 1989]

▶ initialise state |0 . . . 0⟩
▶ computation driven by unitary

gates

▶ read out data using
computational basis
measurements

one-way model (MBQC)

X s2
3 MXY ,β

2 Z s1
3 X s1

2 MXY ,α
1 E23E12N3N2

[Raussendorf & Briegel 2001]

▶ initialise entangled resource
state (can be independent of
computation)

▶ computation driven by
successive adaptive single-qubit
measurements

▶ if goal is state preparation, need
Pauli gates as correction at end

Two models of quantum computation

quantum circuit model

T † T

T

[Deutsch 1989]

▶ initialise state |0 . . . 0⟩

▶ computation driven by unitary
gates

▶ read out data using
computational basis
measurements

one-way model (MBQC)

X s2
3 MXY ,β

2 Z s1
3 X s1

2 MXY ,α
1 E23E12N3N2

[Raussendorf & Briegel 2001]

▶ initialise entangled resource
state (can be independent of
computation)

▶ computation driven by
successive adaptive single-qubit
measurements

▶ if goal is state preparation, need
Pauli gates as correction at end

Two models of quantum computation

quantum circuit model

T † T

T

[Deutsch 1989]

▶ initialise state |0 . . . 0⟩
▶ computation driven by unitary

gates

▶ read out data using
computational basis
measurements

one-way model (MBQC)

X s2
3 MXY ,β

2 Z s1
3 X s1

2 MXY ,α
1 E23E12N3N2

[Raussendorf & Briegel 2001]

▶ initialise entangled resource
state (can be independent of
computation)

▶ computation driven by
successive adaptive single-qubit
measurements

▶ if goal is state preparation, need
Pauli gates as correction at end

Two models of quantum computation

quantum circuit model

T † T

T

[Deutsch 1989]

▶ initialise state |0 . . . 0⟩
▶ computation driven by unitary

gates

▶ read out data using
computational basis
measurements

one-way model (MBQC)

X s2
3 MXY ,β

2 Z s1
3 X s1

2 MXY ,α
1 E23E12N3N2

[Raussendorf & Briegel 2001]

▶ initialise entangled resource
state (can be independent of
computation)

▶ computation driven by
successive adaptive single-qubit
measurements

▶ if goal is state preparation, need
Pauli gates as correction at end

Two models of quantum computation

quantum circuit model

T † T

T

[Deutsch 1989]

▶ initialise state |0 . . . 0⟩
▶ computation driven by unitary

gates

▶ read out data using
computational basis
measurements

one-way model (MBQC)

X s2
3 MXY ,β

2 Z s1
3 X s1

2 MXY ,α
1 E23E12N3N2

[Raussendorf & Briegel 2001]

▶ initialise entangled resource
state (can be independent of
computation)

▶ computation driven by
successive adaptive single-qubit
measurements

▶ if goal is state preparation, need
Pauli gates as correction at end

Two models of quantum computation

quantum circuit model

T † T

T

[Deutsch 1989]

▶ initialise state |0 . . . 0⟩
▶ computation driven by unitary

gates

▶ read out data using
computational basis
measurements

one-way model (MBQC)

X s2
3 MXY ,β

2 Z s1
3 X s1

2 MXY ,α
1 E23E12N3N2

[Raussendorf & Briegel 2001]

▶ initialise entangled resource
state (can be independent of
computation)

▶ computation driven by
successive adaptive single-qubit
measurements

▶ if goal is state preparation, need
Pauli gates as correction at end

Two models of quantum computation

quantum circuit model

T † T

T

[Deutsch 1989]

▶ initialise state |0 . . . 0⟩
▶ computation driven by unitary

gates

▶ read out data using
computational basis
measurements

one-way model (MBQC)

X s2
3 MXY ,β

2 Z s1
3 X s1

2 MXY ,α
1 E23E12N3N2

[Raussendorf & Briegel 2001]

▶ initialise entangled resource
state (can be independent of
computation)

▶ computation driven by
successive adaptive single-qubit
measurements

▶ if goal is state preparation, need
Pauli gates as correction at end

Two models of quantum computation

quantum circuit model

T † T

T

[Deutsch 1989]

▶ initialise state |0 . . . 0⟩
▶ computation driven by unitary

gates

▶ read out data using
computational basis
measurements

one-way model (MBQC)

X s2
3 MXY ,β

2 Z s1
3 X s1

2 MXY ,α
1 E23E12N3N2

[Raussendorf & Briegel 2001]

▶ initialise entangled resource
state (can be independent of
computation)

▶ computation driven by
successive adaptive single-qubit
measurements

▶ if goal is state preparation, need
Pauli gates as correction at end

Motivation

Translation between models

▶ circuit to MBQC is straightforward

▶ MBQC to circuit with ancillas is also straightforward

Question 1: How to translate any (suitably deterministic) MBQC into an
ancilla-free circuit?

Rewriting MBQCs

▶ optimisation (of circuits and of MBQC themselves), e.g. computational depth,
number of operations,...

▶ verification

▶ blind quantum computation

Question 2: What rewrite rules would be useful?

Motivation

Translation between models

▶ circuit to MBQC is straightforward

▶ MBQC to circuit with ancillas is also straightforward

Question 1: How to translate any (suitably deterministic) MBQC into an
ancilla-free circuit?

Rewriting MBQCs

▶ optimisation (of circuits and of MBQC themselves), e.g. computational depth,
number of operations,...

▶ verification

▶ blind quantum computation

Question 2: What rewrite rules would be useful?

Motivation

Translation between models

▶ circuit to MBQC is straightforward

▶ MBQC to circuit with ancillas is also straightforward

Question 1: How to translate any (suitably deterministic) MBQC into an
ancilla-free circuit?

Rewriting MBQCs

▶ optimisation (of circuits and of MBQC themselves), e.g. computational depth,
number of operations,...

▶ verification

▶ blind quantum computation

Question 2: What rewrite rules would be useful?

Motivation

Translation between models

▶ circuit to MBQC is straightforward

▶ MBQC to circuit with ancillas is also straightforward

Question 1: How to translate any (suitably deterministic) MBQC into an
ancilla-free circuit?

Rewriting MBQCs

▶ optimisation (of circuits and of MBQC themselves), e.g. computational depth,
number of operations,...

▶ verification

▶ blind quantum computation

Question 2: What rewrite rules would be useful?

Motivation

Translation between models

▶ circuit to MBQC is straightforward

▶ MBQC to circuit with ancillas is also straightforward

Question 1: How to translate any (suitably deterministic) MBQC into an
ancilla-free circuit?

Rewriting MBQCs

▶ optimisation (of circuits and of MBQC themselves), e.g. computational depth,
number of operations,...

▶ verification

▶ blind quantum computation

Question 2: What rewrite rules would be useful?

Motivation

Translation between models

▶ circuit to MBQC is straightforward

▶ MBQC to circuit with ancillas is also straightforward

Question 1: How to translate any (suitably deterministic) MBQC into an
ancilla-free circuit?

Rewriting MBQCs

▶ optimisation (of circuits and of MBQC themselves), e.g. computational depth,
number of operations,...

▶ verification

▶ blind quantum computation

Question 2: What rewrite rules would be useful?

Motivation

Translation between models

▶ circuit to MBQC is straightforward

▶ MBQC to circuit with ancillas is also straightforward

Question 1: How to translate any (suitably deterministic) MBQC into an
ancilla-free circuit?

Rewriting MBQCs

▶ optimisation (of circuits and of MBQC themselves), e.g. computational depth,
number of operations,...

▶ verification

▶ blind quantum computation

Question 2: What rewrite rules would be useful?

Motivation

Translation between models

▶ circuit to MBQC is straightforward

▶ MBQC to circuit with ancillas is also straightforward

Question 1: How to translate any (suitably deterministic) MBQC into an
ancilla-free circuit?

Rewriting MBQCs

▶ optimisation (of circuits and of MBQC themselves), e.g. computational depth,
number of operations,...

▶ verification

▶ blind quantum computation

Question 2: What rewrite rules would be useful?

Motivation

Translation between models

▶ circuit to MBQC is straightforward

▶ MBQC to circuit with ancillas is also straightforward

Question 1: How to translate any (suitably deterministic) MBQC into an
ancilla-free circuit?

Rewriting MBQCs

▶ optimisation (of circuits and of MBQC themselves), e.g. computational depth,
number of operations,...

▶ verification

▶ blind quantum computation

Question 2: What rewrite rules would be useful?

Outline

The one-way model of measurement-based quantum computing

A common formalism for circuits and MBQC

Translation and rewriting

Conclusions

Outline

The one-way model of measurement-based quantum computing

A common formalism for circuits and MBQC

Translation and rewriting

Conclusions

Resource states for the one-way model

The resource states are graph states defined by simple graphs G = (V ,E):

▶ For each vertex in V , a qubit prepared in state |+⟩.

▶ For each edge in E , a CZ gate.

1 2

4 3
⇝

CZ12CZ23CZ24CZ34

|++++⟩

All graph states are stabiliser states: eigenstates of certain tensor products of
Pauli matrices.

Resource states for the one-way model

The resource states are graph states defined by simple graphs G = (V ,E):

▶ For each vertex in V , a qubit prepared in state |+⟩.
▶ For each edge in E , a CZ gate.

1 2

4 3
⇝ CZ12CZ23CZ24CZ34 |++++⟩

All graph states are stabiliser states: eigenstates of certain tensor products of
Pauli matrices.

Resource states for the one-way model

The resource states are graph states defined by simple graphs G = (V ,E):

▶ For each vertex in V , a qubit prepared in state |+⟩.
▶ For each edge in E , a CZ gate.

1 2

4 3
⇝ CZ12CZ23CZ24CZ34 |++++⟩

All graph states are stabiliser states: eigenstates of certain tensor products of
Pauli matrices.

Resource states for the one-way model

The resource states are graph states defined by simple graphs G = (V ,E):

▶ For each vertex in V , a qubit prepared in state |+⟩.
▶ For each edge in E , a CZ gate.

1 2

4 3
⇝ CZ12CZ23CZ24CZ34 |++++⟩

All graph states are stabiliser states: eigenstates of certain tensor products of
Pauli matrices.

Measurements and corrections

Measurements are constrained to three planes of the Bloch sphere spanned by two
of the Pauli operators: XY , XZ and YZ .

▶ Each measurement has an associated angle α.

▶ Pauli measurements may be treated separately.

Desired and undesired measurement outcomes are related by Pauli matrices, e.g.

|+XY ,α⟩ =
1√
2
(|0⟩+ e iα |1⟩) |−XY ,α⟩ =

1√
2
(|0⟩ − e iα |1⟩) = Z |+XY ,α⟩

Correction strategy: use stabiliser property of graph state to turn undesired
outcome into desired one by applying Paulis to other qubits.

▶ Must have trivial effects on all qubits that are already measured.

Measurements and corrections

Measurements are constrained to three planes of the Bloch sphere spanned by two
of the Pauli operators: XY , XZ and YZ .

▶ Each measurement has an associated angle α.

▶ Pauli measurements may be treated separately.

Desired and undesired measurement outcomes are related by Pauli matrices, e.g.

|+XY ,α⟩ =
1√
2
(|0⟩+ e iα |1⟩) |−XY ,α⟩ =

1√
2
(|0⟩ − e iα |1⟩) = Z |+XY ,α⟩

Correction strategy: use stabiliser property of graph state to turn undesired
outcome into desired one by applying Paulis to other qubits.

▶ Must have trivial effects on all qubits that are already measured.

Measurements and corrections

Measurements are constrained to three planes of the Bloch sphere spanned by two
of the Pauli operators: XY , XZ and YZ .

▶ Each measurement has an associated angle α.

▶ Pauli measurements may be treated separately.

Desired and undesired measurement outcomes are related by Pauli matrices, e.g.

|+XY ,α⟩ =
1√
2
(|0⟩+ e iα |1⟩) |−XY ,α⟩ =

1√
2
(|0⟩ − e iα |1⟩) = Z |+XY ,α⟩

Correction strategy: use stabiliser property of graph state to turn undesired
outcome into desired one by applying Paulis to other qubits.

▶ Must have trivial effects on all qubits that are already measured.

Measurements and corrections

Measurements are constrained to three planes of the Bloch sphere spanned by two
of the Pauli operators: XY , XZ and YZ .

▶ Each measurement has an associated angle α.

▶ Pauli measurements may be treated separately.

Desired and undesired measurement outcomes are related by Pauli matrices, e.g.

|+XY ,α⟩ =
1√
2
(|0⟩+ e iα |1⟩) |−XY ,α⟩ =

1√
2
(|0⟩ − e iα |1⟩) = Z |+XY ,α⟩

Correction strategy: use stabiliser property of graph state to turn undesired
outcome into desired one by applying Paulis to other qubits.

▶ Must have trivial effects on all qubits that are already measured.

Measurements and corrections

Measurements are constrained to three planes of the Bloch sphere spanned by two
of the Pauli operators: XY , XZ and YZ .

▶ Each measurement has an associated angle α.

▶ Pauli measurements may be treated separately.

Desired and undesired measurement outcomes are related by Pauli matrices, e.g.

|+XY ,α⟩ =
1√
2
(|0⟩+ e iα |1⟩) |−XY ,α⟩ =

1√
2
(|0⟩ − e iα |1⟩) = Z |+XY ,α⟩

Correction strategy: use stabiliser property of graph state to turn undesired
outcome into desired one by applying Paulis to other qubits.

▶ Must have trivial effects on all qubits that are already measured.

Determinism and flow properties

Theorem [Browne et al. 2007, Mhalla et al. 2022]

An MBQC has a robustly deterministic implementation if and only if the
underlying labelled open graph has flow.

•

•

◦
XY XY

X Y
XY

XY

X

inputs outputs

A flow consists of

▶ a partial order over the
vertices,

▶ and a correction function,

satisfying certain compatibility
conditions.

Theorem [de Beaudrap 2008; Mhalla & Perdrix 2008; B. et al. 2021; Simmons 2021]

Flows can be found in polynomial time.

Determinism and flow properties

Theorem [Browne et al. 2007, Mhalla et al. 2022]

An MBQC has a robustly deterministic implementation if and only if the
underlying labelled open graph has flow.

•

•

◦
XY XY

X Y
XY

XY

X

inputs outputs

A flow consists of

▶ a partial order over the
vertices,

▶ and a correction function,

satisfying certain compatibility
conditions.

Theorem [de Beaudrap 2008; Mhalla & Perdrix 2008; B. et al. 2021; Simmons 2021]

Flows can be found in polynomial time.

Determinism and flow properties

Theorem [Browne et al. 2007, Mhalla et al. 2022]

An MBQC has a robustly deterministic implementation if and only if the
underlying labelled open graph has flow.

•

•

◦
XY XY

X Y
XY

XY

X

inputs outputs

A flow consists of

▶ a partial order over the
vertices,

▶ and a correction function,

satisfying certain compatibility
conditions.

Theorem [de Beaudrap 2008; Mhalla & Perdrix 2008; B. et al. 2021; Simmons 2021]

Flows can be found in polynomial time.

Determinism and flow properties

Theorem [Browne et al. 2007, Mhalla et al. 2022]

An MBQC has a robustly deterministic implementation if and only if the
underlying labelled open graph has flow.

•

•

◦

XY XY

X Y
XY

XY

X

inputs outputs

A flow consists of

▶ a partial order over the
vertices,

▶ and a correction function,

satisfying certain compatibility
conditions.

Theorem [de Beaudrap 2008; Mhalla & Perdrix 2008; B. et al. 2021; Simmons 2021]

Flows can be found in polynomial time.

Determinism and flow properties

Theorem [Browne et al. 2007, Mhalla et al. 2022]

An MBQC has a robustly deterministic implementation if and only if the
underlying labelled open graph has flow.

•

•

◦
XY XY

X Y
XY

XY

X

inputs outputs

A flow consists of

▶ a partial order over the
vertices,

▶ and a correction function,

satisfying certain compatibility
conditions.

Theorem [de Beaudrap 2008; Mhalla & Perdrix 2008; B. et al. 2021; Simmons 2021]

Flows can be found in polynomial time.

Determinism and flow properties

Theorem [Browne et al. 2007, Mhalla et al. 2022]

An MBQC has a robustly deterministic implementation if and only if the
underlying labelled open graph has flow.

•

•

◦
XY XY

X Y
XY

XY

X

inputs outputs

A flow consists of

▶ a partial order over the
vertices,

▶ and a correction function,

satisfying certain compatibility
conditions.

Theorem [de Beaudrap 2008; Mhalla & Perdrix 2008; B. et al. 2021; Simmons 2021]

Flows can be found in polynomial time.

Determinism and flow properties

Theorem [Browne et al. 2007, Mhalla et al. 2022]

An MBQC has a robustly deterministic implementation if and only if the
underlying labelled open graph has flow.

•

•

◦
XY XY

X Y
XY

XY

X

inputs outputs

A flow consists of

▶ a partial order over the
vertices,

▶ and a correction function,

satisfying certain compatibility
conditions.

Theorem [de Beaudrap 2008; Mhalla & Perdrix 2008; B. et al. 2021; Simmons 2021]

Flows can be found in polynomial time.

Determinism and flow properties

Theorem [Browne et al. 2007, Mhalla et al. 2022]

An MBQC has a robustly deterministic implementation if and only if the
underlying labelled open graph has flow.

•

•

◦
XY XY

X Y
XY

XY

X

inputs outputs

A flow consists of

▶ a partial order over the
vertices,

▶ and a correction function,

satisfying certain compatibility
conditions.

Theorem [de Beaudrap 2008; Mhalla & Perdrix 2008; B. et al. 2021; Simmons 2021]

Flows can be found in polynomial time.

Outline

The one-way model of measurement-based quantum computing

A common formalism for circuits and MBQC

Translation and rewriting

Conclusions

The one-way model in ZX-notation

An MBQC is represented in the graphical ZX-notation as follows:

▶ green vertices with one outgoing wire each, connected by blue dashed edges,
for the graph state,

▶ additional wires for the inputs, and

▶ additional vertices connected to some of the outgoing wires for the
measurements: XY ⇝ α XZ ⇝ απ

2 YZ ⇝ α

π
4

−π
2

5π
40

0 0

0

The one-way model in ZX-notation

An MBQC is represented in the graphical ZX-notation as follows:

▶ green vertices with one outgoing wire each, connected by blue dashed edges,
for the graph state,

▶ additional wires for the inputs, and

▶ additional vertices connected to some of the outgoing wires for the
measurements: XY ⇝ α XZ ⇝ απ

2 YZ ⇝ α

π
4

−π
2

5π
40

0 0

0

The one-way model in ZX-notation

An MBQC is represented in the graphical ZX-notation as follows:

▶ green vertices with one outgoing wire each, connected by blue dashed edges,
for the graph state,

▶ additional wires for the inputs, and

▶ additional vertices connected to some of the outgoing wires for the
measurements: XY ⇝ α XZ ⇝ απ

2 YZ ⇝ α

π
4

−π
2

5π
40

0 0

0

ZX generators and circuits in ZX-notation

α

..
.

..
.

α

..
.

..
. α

..
. β

..
.

1 . . . 0
...

. . .
...

0 . . . e iα

 1√
2

(
1 1
1 −1

)

..
.

..
.α α

..
. β

..
.

Gate H

S RZ (α)

ZX equivalent

π
2 α

ZX generators and circuits in ZX-notation

α

..
.

..
. α

..
.

..
.

α

..
. β

..
.

1 . . . 0
...

. . .
...

0 . . . e iα

 1√
2

(
1 1
1 −1

)

..
.

..
.α

α

..
. β

..
.

Gate H

S RZ (α)

ZX equivalent

π
2 α

ZX generators and circuits in ZX-notation

α

..
.

..
. α

..
.

..
. α

..
. β

..
.

1 . . . 0
...

. . .
...

0 . . . e iα

 1√
2

(
1 1
1 −1

)

..
.

..
.α α

..
. β

..
.

Gate H

S RZ (α)

ZX equivalent

π
2 α

ZX generators and circuits in ZX-notation

α

..
.

..
. α

..
.

..
. α

..
. β

..
.

1 . . . 0
...

. . .
...

0 . . . e iα

 1√
2

(
1 1
1 −1

)

..
.

..
.α α

..
. β

..
.

Gate H

S RZ (α)

ZX equivalent

π
2 α

ZX generators and circuits in ZX-notation

α

..
.

..
. α

..
.

..
. α

..
. β

..
.

1 . . . 0
...

. . .
...

0 . . . e iα

 1√
2

(
1 1
1 −1

)

..
.

..
.α α

..
. β

..
.

Gate H S

RZ (α)

ZX equivalent π
2

α

ZX generators and circuits in ZX-notation

α

..
.

..
. α

..
.

..
. α

..
. β

..
.

1 . . . 0
...

. . .
...

0 . . . e iα

 1√
2

(
1 1
1 −1

)

..
.

..
.α α

..
. β

..
.

Gate H S RZ (α)

ZX equivalent π
2 α

ZX generators and circuits in ZX-notation

α

..
.

..
. α

..
.

..
. α

..
. β

..
.

1 . . . 0
...

. . .
...

0 . . . e iα

 1√
2

(
1 1
1 −1

)

..
.

..
.α α

..
. β

..
.

Gate H S RZ (α)

ZX equivalent π
2 α

ZX generators and circuits in ZX-notation

α

..
.

..
. α

..
.

..
. α

..
. β

..
.

1 . . . 0
...

. . .
...

0 . . . e iα

 1√
2

(
1 1
1 −1

)

..
.

..
.α α

..
. β

..
.

Gate H S RZ (α)

ZX equivalent π
2 α

Sound and complete ZX-calculus rewrite rules (up to scalars)

β..
.

..
.

α ..
.

..
.

=..
.

..
.

..
.α+β

−α=
π

π

π α

..
.

..
.

π

..
.α =

..
.

..
. =

..
. =

=

=

..
.α α

..
.

π
2

π
2

π
2= ‘Only connectivity matters.’

This set is complete for the stabiliser ZX-calculus [B. 2014], can find overview over
different complete rule sets in [van de Wetering 2021].

Outline

The one-way model of measurement-based quantum computing

A common formalism for circuits and MBQC

Translation and rewriting

Conclusions

Ancilla-free circuit extraction: overview

π
4

π
4

5π
4

D -π
4

π
4

π

3π
4

circuitZX-diagram with extended gflow

[Duncan et al. 2020; B., Miller-Bakewell, Felice, Lobski, van de Wetering 2021; Staudacher 2023]

Simplify connections between frontier and unextracted layer

D

v w

=

extractedunextracted

D

v w
extractedunextracted

= D

v w
extractedunextracted

= D

v w
extractedunextracted

u

Extract a maximal vertex

..
.

..
.

α

v

w

..
.

..
.

..
.

α
v

..
.

=

extractedunextracted extractedunextracted

If needed, change measurement type

π
4

5π
4

D -π
4

π
4

3π
4

extractedunextracted

π
4

5π
4

D -π
4

π
4

3π
4

extractedunextracted

=

Flow-preserving rewrite rules for the stabiliser ZX-calculus

Local complementation

...

...

...

...

=
...

...

π
2

π
2

π
2

π
2

...

...

...

...

...
...

−π
2

Z -deletion/insertion

...

...

...

...

aπ

=
...

...

aπ

aπ aπ

aπ
...

...

...

...

...
...

Theorem [McElvanney & B. 2023]

Suppose D and D ′ are two stabiliser ZX-diagrams with flow that both represent
the same linear map. Then one can be rewritten into the other using local
complementation, Z -insertion, and Z -deletion.

Flow-preserving rewrite rules for the stabiliser ZX-calculus

Local complementation

...

...

...

...

=
...

...

π
2

π
2

π
2

π
2

...

...

...

...

...
...

−π
2

Z -deletion/insertion

...

...

...

...

aπ

=
...

...

aπ

aπ aπ

aπ
...

...

...

...

...
...

Theorem [McElvanney & B. 2023]

Suppose D and D ′ are two stabiliser ZX-diagrams with flow that both represent
the same linear map. Then one can be rewritten into the other using local
complementation, Z -insertion, and Z -deletion.

Flow-preserving rewrite rules for the stabiliser ZX-calculus

Local complementation

...

...

...

...

=
...

...

π
2

π
2

π
2

π
2

...

...

...

...

...
...

−π
2

Z -deletion/insertion

...

...

...

...

aπ

=
...

...

aπ

aπ aπ

aπ
...

...

...

...

...
...

Theorem [McElvanney & B. 2023]

Suppose D and D ′ are two stabiliser ZX-diagrams with flow that both represent
the same linear map. Then one can be rewritten into the other using local
complementation, Z -insertion, and Z -deletion.

Flow-preserving rewrite rules for the stabiliser ZX-calculus

Local complementation

...

...

...

...

=
...

...

π
2

π
2

π
2

π
2

...

...

...

...

...
...

−π
2

Z -deletion/insertion

...

...

...

...

aπ

=
...

...

aπ

aπ aπ

aπ
...

...

...

...

...
...

Theorem [McElvanney & B. 2023]

Suppose D and D ′ are two stabiliser ZX-diagrams with flow that both represent
the same linear map. Then one can be rewritten into the other using local
complementation, Z -insertion, and Z -deletion.

Flow-preserving rewrite rules for the stabiliser ZX-calculus

Local complementation

...

...

...

...

=
...

...

π
2

π
2

π
2

π
2

...

...

...

...

...
...

−π
2

Z -deletion/insertion

...

...

...

...

aπ

=
...

...

aπ

aπ aπ

aπ
...

...

...

...

...
...

Theorem [McElvanney & B. 2023]

Suppose D and D ′ are two stabiliser ZX-diagrams with flow that both represent
the same linear map. Then one can be rewritten into the other using local
complementation, Z -insertion, and Z -deletion.

Flow-preserving rewrite rules for the stabiliser ZX-calculus

Local complementation

...

...

...

...

=
...

...

π
2

π
2

π
2

π
2

...

...

...

...

...
...

−π
2

Z -deletion/insertion

...

...

...

...

aπ

=
...

...

aπ

aπ aπ

aπ
...

...

...

...

...
...

Theorem [McElvanney & B. 2023]

Suppose D and D ′ are two stabiliser ZX-diagrams with flow that both represent
the same linear map. Then one can be rewritten into the other using local
complementation, Z -insertion, and Z -deletion.

Further flow-preserving rewrite rules

Phase gadget fusion/splitting

...

...

α

=
...

β

...

...

α + β
...

Vertex splitting/fusion

... α

... α − β

... β

0=N

N \W

W

Further flow-preserving rewrite rules

Phase gadget fusion/splitting

...

...

α

=
...

β

...

...

α + β
...

Vertex splitting/fusion

... α

... α − β

... β

0=N

N \W

W

Further flow-preserving rewrite rules

Phase gadget fusion/splitting

...

...

α

=
...

β

...

...

α + β
...

Vertex splitting/fusion

... α

... α − β

... β

0=N

N \W

W

Further flow-preserving rewrite rules

Phase gadget fusion/splitting

...

...

α

=
...

β

...

...

α + β
...

Vertex splitting/fusion

... α

... α − β

... β

0=N

N \W

W

Applications of flow-preserving rewriting

Optimisation

▶ T -count [Duncan et al. 2020]

▶ two-qubit gate count [Staudacher et al. 2022]

Blind quantum computing

▶ more resource-efficient protocol for scenario with two non-communicating
quantum servers [Cao 2023]

Computational complexity of reasoning with ZX-calculus

▶ circuit extraction from arbitrary ZX diagram is #P-hard [de Beaudrap et al. 2022]

▶ circuit extraction from ZX diagrams with flow is in P

Applications of flow-preserving rewriting

Optimisation

▶ T -count [Duncan et al. 2020]

▶ two-qubit gate count [Staudacher et al. 2022]

Blind quantum computing

▶ more resource-efficient protocol for scenario with two non-communicating
quantum servers [Cao 2023]

Computational complexity of reasoning with ZX-calculus

▶ circuit extraction from arbitrary ZX diagram is #P-hard [de Beaudrap et al. 2022]

▶ circuit extraction from ZX diagrams with flow is in P

Applications of flow-preserving rewriting

Optimisation

▶ T -count [Duncan et al. 2020]

▶ two-qubit gate count [Staudacher et al. 2022]

Blind quantum computing

▶ more resource-efficient protocol for scenario with two non-communicating
quantum servers [Cao 2023]

Computational complexity of reasoning with ZX-calculus

▶ circuit extraction from arbitrary ZX diagram is #P-hard [de Beaudrap et al. 2022]

▶ circuit extraction from ZX diagrams with flow is in P

Applications of flow-preserving rewriting

Optimisation

▶ T -count [Duncan et al. 2020]

▶ two-qubit gate count [Staudacher et al. 2022]

Blind quantum computing

▶ more resource-efficient protocol for scenario with two non-communicating
quantum servers [Cao 2023]

Computational complexity of reasoning with ZX-calculus

▶ circuit extraction from arbitrary ZX diagram is #P-hard [de Beaudrap et al. 2022]

▶ circuit extraction from ZX diagrams with flow is in P

Applications of flow-preserving rewriting

Optimisation

▶ T -count [Duncan et al. 2020]

▶ two-qubit gate count [Staudacher et al. 2022]

Blind quantum computing

▶ more resource-efficient protocol for scenario with two non-communicating
quantum servers [Cao 2023]

Computational complexity of reasoning with ZX-calculus

▶ circuit extraction from arbitrary ZX diagram is #P-hard [de Beaudrap et al. 2022]

▶ circuit extraction from ZX diagrams with flow is in P

Applications of flow-preserving rewriting

Optimisation

▶ T -count [Duncan et al. 2020]

▶ two-qubit gate count [Staudacher et al. 2022]

Blind quantum computing

▶ more resource-efficient protocol for scenario with two non-communicating
quantum servers [Cao 2023]

Computational complexity of reasoning with ZX-calculus

▶ circuit extraction from arbitrary ZX diagram is #P-hard [de Beaudrap et al. 2022]

▶ circuit extraction from ZX diagrams with flow is in P

Applications of flow-preserving rewriting

Optimisation

▶ T -count [Duncan et al. 2020]

▶ two-qubit gate count [Staudacher et al. 2022]

Blind quantum computing

▶ more resource-efficient protocol for scenario with two non-communicating
quantum servers [Cao 2023]

Computational complexity of reasoning with ZX-calculus

▶ circuit extraction from arbitrary ZX diagram is #P-hard [de Beaudrap et al. 2022]

▶ circuit extraction from ZX diagrams with flow is in P

Outline

The one-way model of measurement-based quantum computing

A common formalism for circuits and MBQC

Translation and rewriting

Conclusions

Summary and outlook

It is useful to:

▶ translate between one-way measurement patterns and circuits

▶ rewrite measurement patterns (while preserving interpretation & property of
having flow)

▶ employ ZX-calculus as a common language and to visualise graph structure

Further work

▶ complete set of flow-preserving rewrite rules

▶ extra conditions for some rules for different types of flow

▶ going beyond the current framework of flow

Thank you!

Summary and outlook

It is useful to:

▶ translate between one-way measurement patterns and circuits

▶ rewrite measurement patterns (while preserving interpretation & property of
having flow)

▶ employ ZX-calculus as a common language and to visualise graph structure

Further work

▶ complete set of flow-preserving rewrite rules

▶ extra conditions for some rules for different types of flow

▶ going beyond the current framework of flow

Thank you!

Summary and outlook

It is useful to:

▶ translate between one-way measurement patterns and circuits

▶ rewrite measurement patterns (while preserving interpretation & property of
having flow)

▶ employ ZX-calculus as a common language and to visualise graph structure

Further work

▶ complete set of flow-preserving rewrite rules

▶ extra conditions for some rules for different types of flow

▶ going beyond the current framework of flow

Thank you!

Summary and outlook

It is useful to:

▶ translate between one-way measurement patterns and circuits

▶ rewrite measurement patterns (while preserving interpretation & property of
having flow)

▶ employ ZX-calculus as a common language and to visualise graph structure

Further work

▶ complete set of flow-preserving rewrite rules

▶ extra conditions for some rules for different types of flow

▶ going beyond the current framework of flow

Thank you!

Summary and outlook

It is useful to:

▶ translate between one-way measurement patterns and circuits

▶ rewrite measurement patterns (while preserving interpretation & property of
having flow)

▶ employ ZX-calculus as a common language and to visualise graph structure

Further work

▶ complete set of flow-preserving rewrite rules

▶ extra conditions for some rules for different types of flow

▶ going beyond the current framework of flow

Thank you!

Summary and outlook

It is useful to:

▶ translate between one-way measurement patterns and circuits

▶ rewrite measurement patterns (while preserving interpretation & property of
having flow)

▶ employ ZX-calculus as a common language and to visualise graph structure

Further work

▶ complete set of flow-preserving rewrite rules

▶ extra conditions for some rules for different types of flow

▶ going beyond the current framework of flow

Thank you!

Summary and outlook

It is useful to:

▶ translate between one-way measurement patterns and circuits

▶ rewrite measurement patterns (while preserving interpretation & property of
having flow)

▶ employ ZX-calculus as a common language and to visualise graph structure

Further work

▶ complete set of flow-preserving rewrite rules

▶ extra conditions for some rules for different types of flow

▶ going beyond the current framework of flow

Thank you!

Summary and outlook

It is useful to:

▶ translate between one-way measurement patterns and circuits

▶ rewrite measurement patterns (while preserving interpretation & property of
having flow)

▶ employ ZX-calculus as a common language and to visualise graph structure

Further work

▶ complete set of flow-preserving rewrite rules

▶ extra conditions for some rules for different types of flow

▶ going beyond the current framework of flow

Thank you!

Summary and outlook

It is useful to:

▶ translate between one-way measurement patterns and circuits

▶ rewrite measurement patterns (while preserving interpretation & property of
having flow)

▶ employ ZX-calculus as a common language and to visualise graph structure

Further work

▶ complete set of flow-preserving rewrite rules

▶ extra conditions for some rules for different types of flow

▶ going beyond the current framework of flow

Thank you!

	The one-way model of measurement-based quantum computing
	A common formalism for circuits and MBQC
	Translation and rewriting
	Conclusions

